World Journal of Microbiology and Biotechnology

, Volume 28, Issue 11, pp 3081–3095 | Cite as

Multifaceted attributes of dairy propionibacteria: a review

  • Poonam
  • Sarang Dilip Pophaly
  • Sudhir Kumar Tomar
  • Sachinandan De
  • Rameshwar Singh


Dairy propionibacteria are Generally Recognized as Safe (GRAS) status microorganisms which have been traditionally used for the manufacture of Swiss type cheeses. In the last two decades various added features and functionalities have been discovered and developed from these bacteria. Propionibacteria are robust organisms with remarkable adaptability to technological and physiological stress conditions. Besides, they also display a multitude of health promoting properties like modulation of gut microbiota, improved gut physiology and immunomodulation suggesting their promising probiotic potential. Propionibacteria produce an interestingly wide range of functional biomolecules like B group vitamins, trehalose, conjugated linoleic acid, propionic acid, bacteriocins, bifidogenic factors etc. These bacteria are thus now being explored for designing novel functional foods as well as for industrial production of nutraceuticals. Growing interest in these bacteria is fueled by the first whole genome sequencing of a Propionibacterium freudenreichii strain providing a platform for better understanding of various pathways and further improvement in related process technologies.


Propionibacteria Probiotics Vitamins CLA Trehalose Propionic acid 



The authors thankfully acknowledge the support from Indian Council of Agriculture Research (ICAR), New Delhi and The Director, National Dairy Research Institute (NDRI) Karnal India.


  1. Adams MC, Huang Y, Kotula L, Blake RJ, Garg ML (2002) The efficacy of a potential new probiotic, Propionibacterium jensenii 702, to correct vitamin B12 levels in an in vivo deficient animal model. Asia Pac J Clin Nutr 11:S261Google Scholar
  2. Ali MN, Mohd MK (2011) Enhancement in vitamin B12 production by mutant strains of Propionibacterium freudenreichii. Int J Eng Sci 3:4921–4925Google Scholar
  3. Amrutha N (2010) Studies on the vitamin B12 enrichment of yoghurt using Lactobacillus plantarum and Propionobacterium freudenreichii. Dissertation, CFTRI, IndiaGoogle Scholar
  4. Babuchowski A, Laniewska-Moroz L, Warminska-Radyko I (1999) Propionibacteria in fermented vegetables. Le Lait 79:113–124CrossRefGoogle Scholar
  5. Baker SH, Fy EK, Quattlebaum RG, Barefoot SF (2004) Sensitization of Gram-negative and Gram-positive bacteria to jenseniin G by sublethal injury. J Food Protect 67:1009–1013Google Scholar
  6. Benjamin S, Spener F (2009) Conjugated linoleic acids as functional food: an insight into their health benefits. Nutr Metab 6:36CrossRefGoogle Scholar
  7. Blanc P, Goma G (1987) Kinetics of inhibition in propionic acid fermentation. Bioproc Biosyst Eng 2:175–179Google Scholar
  8. Brede DA, Faye T, Johnsborg O, Ødegård I, Nes IF, Holo H (2004) Molecular and genetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl Environ Microb 70:7303–7310CrossRefGoogle Scholar
  9. Brede DA, Lothe S, Salehian Z, Faye T, Nes IF (2007) Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii. Appl Environ Microb 73:7542–7547CrossRefGoogle Scholar
  10. Britz TJ, Riedel KHJ (1994) Propionibacterium species diversity in Leerdammer cheese. Int J Food Microbiol 22:257–267CrossRefGoogle Scholar
  11. Brzuszkiewicz E, Weiner J, Wollherr A, Thürmer A, Hüpeden J, Lomholt HB, Kilian M, Gottschalk G, Daniel R, Mollenkopf HJ (2011) Comparative genomics and transcriptomics of Propionibacterium acnes. PLoS One 6:e21581CrossRefGoogle Scholar
  12. Bullerman LB, Berry EC (1966) Use of cheese whey for vitamin B12 production. Appl Microbiol 14:353–355Google Scholar
  13. Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, Van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microb 70:5769–5777CrossRefGoogle Scholar
  14. Burgess CM, Smid EJ, Rutten G, Van Sinderen D (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Fact 5:24CrossRefGoogle Scholar
  15. Cardoso FS, Gaspar P, Hugenholtz J, Ramos A, Santos H (2004) Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91:195–204CrossRefGoogle Scholar
  16. Cardoso FS, Castro RF, Borges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153:270–280CrossRefGoogle Scholar
  17. Carvalho AL, Cardoso FS, Bohn A, Neves AR, Santos H (2011) Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl Environ Microb 77:4189–4199CrossRefGoogle Scholar
  18. Chiliveri SR, Yeruva T, Panda SH, Linga VR (2010) Optimization of fermentation parameters for vitamin B12 production using Propionibacterium freudenreichii subsp. shermanii OLP-5 by Taguchi method. J Pure Appl Microbiol 4:647–658Google Scholar
  19. Collado MC, Meriluoto J, Salminen S (2007a) Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus? J Dairy Res 90:2710–2716CrossRefGoogle Scholar
  20. Collado MC, Meriluoto J, Salminen S (2007b) In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Res Int 40:629–636CrossRefGoogle Scholar
  21. Coral J, Karp SG, Porto de Souza Vandenberghe L, Parada JL, Pandey A, Soccol CR (2008) Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Appl Biochem Biotech 151:333–341CrossRefGoogle Scholar
  22. Coronado C, Botello JE, Herrera F (2001) Study and mathematical modeling of the production of propionic acid by Propionibacterium acidipropionici immobilized in a stirred tank fermentor. Biotechnol Progr 17:669–675CrossRefGoogle Scholar
  23. Cousin FJ, Mater DDG, Foligne B, Jan G (2011) Dairy propionibacteria as human probiotics: a review of recent evidence. Dairy Sci Technol 91:1–26Google Scholar
  24. Cousin FJ, Jouan-Lanhouet S, Dimanche-Boitrel MT, Corcos L, Jan G (2012a) Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One 7:e31892CrossRefGoogle Scholar
  25. Cousin FJ, Louesdon S, Maillard MB, Parayre S, Falentin H, Deutsch SM, Boudry G, Jan G (2012b) The first dairy product exclusively fermented by Propionibacterium freudenreichii: a new vector to study probiotic potentialities in vivo. Food Microbiol. doi:
  26. Cummins CS, Johnson JL (1986) Genus I. Propionibacterium Orla-Jensen 1909. In: Sneath PHA, Mair NS, Sharpe ME, Holt J (eds) Bergey’s manual of systematic bacteriology, vol 2. The Williams & Wilkins Co, Baltimore, pp 1346–1353Google Scholar
  27. Dalmasso M, Nicolas P, Falentin H, Valence F, Tanskanen J, Jatila H, Salusjärvi T, Thierry A (2011) Multilocus sequence typing of Propionibacterium freudenreichii. Int J Food Microbiol 145:113–120CrossRefGoogle Scholar
  28. Dalmasso M, Aubert J, Briard-Bion V, Chuat V, Deutsch SM, Even S, Falentin H, Jan G, Jardin J, Maillard MB (2012) A temporal-omic study of Propionibacterium freudenreichii CIRM-BIA1T adaptation strategies in conditions mimicking cheese ripening in the cold. PLoS One 7:e29083CrossRefGoogle Scholar
  29. Danilova IV, Lee HAO, Tourova TP, Ryzhkova EP, Netrusov AI (2012) Propionibacterium freudenreichii strains as antibacterial agents at neutral pH and their production on food grade media fermented by some lactobacilli. J Food Saf 32:48–58CrossRefGoogle Scholar
  30. Darilmaz DO, Beyatli Y (2012a) Acid-bile, antibiotic resistance and inhibitory properties of propionibacteria isolated from Turkish traditional home-made cheeses. Anaerobe 18:122–127CrossRefGoogle Scholar
  31. Darilmaz DO, Beyatli Y (2012b) Investigating hydrophobicity and the effect of exopolysaccharide on aggregation properties of dairy propionibacteria isolated from Turkish homemade cheeses. J Food Protect 75:359–365CrossRefGoogle Scholar
  32. Darilmaz DO, Beyatli Y, Yuksekdag ZN (2012) Aggregation and hydrophobicity properties of 6 dairy propionibacteria strains isolated from homemade Turkish cheeses. J Food Sci 77:M20–M24CrossRefGoogle Scholar
  33. Davidson CA, Rehberger TG (1995) Characterization of Propionibacterium isolated from the rumen of lactating dairy cows. Proc Am Soc Microbiol 1:1–6Google Scholar
  34. Deborde C, Corre C, Rolin DB, Nadal L, De Certaines JD, Boyaval P (1996) Trehalose biosynthesis in dairy Propionibacterium. J Magn Reson Anal 2:297–304Google Scholar
  35. Deutsch SM, Parayre S, Bouchoux A, Guyomarc’h F, Dewulf J, Dols-Lafargue M, Baglinière F, Cousin FJ, Falentin H, Jan G, Foligné B (2012) Contribution of surface β-glucan polysaccharide to physicochemical and immunomodulatory properties of Propionibacterium freudenreichii. Appl Environ Microb 78:1765–1775CrossRefGoogle Scholar
  36. Dherbécourt J, Thierry A, Madec MN, Lortal S (2006) Comparison of amplified ribosomal DNA restriction analysis, peptidoglycan hydrolase and biochemical profiles for rapid dairy propionibacteria species identification. Res Microbiol 157:905–913CrossRefGoogle Scholar
  37. Dherbécourt J, Falentin H, Canaan S, Thierry A (2008) A genomic search approach to identify esterases in Propionibacterium freudenreichii involved in the formation of flavour in Emmental cheese. Microb Cell Fact 7:16CrossRefGoogle Scholar
  38. Dherbécourt J, Falentin H, Jardin J, Maillard MB, Baglinière F, Barloy-Hubler F, Thierry A (2010) Identification of a secreted lipolytic esterase in Propionibacterium freudenreichii, a ripening process bacterium involved in Emmental cheese lipolysis. Appl Environ Microb 76:1181–1188CrossRefGoogle Scholar
  39. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27RCrossRefGoogle Scholar
  40. El-Shafei K, El-Gawad MAMA, Dabiza N, Sharaf OM, Effat BA (2008) A mixed culture of Propionibacterium thoenii P-127, Lactobacillus rhamnosus and Lactobacillus plantarum as protective cultures in Kareish cheese. Pol J Food Nutr Sci 58:433–441Google Scholar
  41. Falentin H, Deutsch SM, Jan G, Loux V, Thierry A, Parayre S, Maillard MB, Dherbécourt J, Cousin FJ, Jardin J (2010a) The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy Actinobacterium with food and probiotic applications. PLoS One 5:e11748CrossRefGoogle Scholar
  42. Falentin H, Postollec F, Parayre S, Henaff N, Le Bivic P, Richoux R, Thierry A, Sohier D (2010b) Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture. Int J Food Microbiol 144:10–19CrossRefGoogle Scholar
  43. Faye T, Langsrud T, Nes IF, Holo H (2000) Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl Environ Microb 66:4230–4236CrossRefGoogle Scholar
  44. Faye T, Brede DA, Langsrud T, Nes IF, Holo H (2002) An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J Bacteriol 184:3649–3656CrossRefGoogle Scholar
  45. Faye T, Holo H, Langsrud T, Nes IF, Brede DA (2011) The unconventional antimicrobial peptides of the classical propionibacteria. Appl Microbiol Biot 89:549–554CrossRefGoogle Scholar
  46. Feng XH, Chen F, Xu H, Wu B, Yao J, Ying HJ, Ouyang PK (2010) Propionic acid fermentation by Propionibacterium freudenreichii CCTCC M207015 in a multi-point fibrous-bed bioreactor. Bioproc Biosyst Eng 33:1077–1085CrossRefGoogle Scholar
  47. Feng X, Chen F, Xu H, Wu B, Li H, Li S, Ouyang P (2011) Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresour Technol 102:6141–6146CrossRefGoogle Scholar
  48. Fernandez-Espla MD, Fox PF (1998) Effect of adding Propionibacterium shermanii NCDO 853 or Lactobacillus casei ssp. casei IFPL 731 on proteolysis and flavor development of Cheddar cheese. J Agri Food Chem 46:1228–1234CrossRefGoogle Scholar
  49. Foligné B, Deutsch SM, Breton J, Cousin FJ, Dewulf J, Samson M, Pot B, Jan G (2010) Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo. Appl Environ Microb 76:8259–8264CrossRefGoogle Scholar
  50. Furuichi K, Amano A, Katakura Y, Ninomiya K, Shioya S (2006a) Optimal aerobic cultivation method for 1, 4-dihydroxy-2-naphthoic acid production by Propionibacterium freudenreichii ET-3. J Biosci Bioeng 102:198–205CrossRefGoogle Scholar
  51. Furuichi K, Hojo K, Katakura Y, Ninomiya K, Shioya S (2006b) Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1, 4-dihydroxy-2-naphthoic acid to menaquinone. J Biosci Bioeng 101:464–470CrossRefGoogle Scholar
  52. Gardner N, Champagne CP (2005) Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. J Appl Microbiol 99:1236–1245CrossRefGoogle Scholar
  53. Goswami V, Srivastava AK (2000) Fed-batch propionic acid production by Propionibacterium acidipropionici. Biochem Eng J 4:121–128CrossRefGoogle Scholar
  54. Goswami V, Srivastava AK (2001) Propionic acid production in an in situ cell retention bioreactor. Appl Microbiol Biot 56:676–680CrossRefGoogle Scholar
  55. Gratz S, Mykkanen H, El-Nezami H (2005) Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. J Food Protect 68:2470–2474Google Scholar
  56. Grinstead DA, Barefoot SF (1992) Jenseniin G, a heat-stable bacteriocin produced by Propionibacterium jensenii P126. Appl Environ Microb 58:215–220Google Scholar
  57. Gupta A, Srivastava AK (2001) Continuous propionic acid production from cheese whey using in situ spin filter. Biotechnol Bioproc Eng 6:1–5CrossRefGoogle Scholar
  58. Hatakka K, Holma R, El-Nezami H, Suomalainen T, Kuisma M, Saxelin M, Poussa T, Mykkänen H, Korpela R (2008) The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. Int J Food Microbiol 128:406–410CrossRefGoogle Scholar
  59. Helena L, Anders B, Karin J, Hans J, Johan S (2010) Glycerol enhances the antifungal activity of dairy propionibacteria. Int J Microbiol 2010:1–9Google Scholar
  60. Hennessy AA, Ross RP, Stanton C, Devery R, Murphy JJ, Saarela M (2007) Development of dairy based functional foods enriched in conjugated linoleic acid with special reference to rumenic acid. In: Saarela M (ed) Functional dairy products, vol 2. CRC Press, Finland, pp 443–494CrossRefGoogle Scholar
  61. Hennessy AA, Barrett E, Paul Ross R, Fitzgerald GF, Devery R, Stanton C (2012) The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids 47:313–327CrossRefGoogle Scholar
  62. Ho PH, Luo JB, Adams MC (2009) Lactobacilli and dairy propionibacterium with potential as biopreservatives against food fungi and yeast contamination. Appl Biochem Microbiol 45:414–418CrossRefGoogle Scholar
  63. Holo H, Faye T, Brede DA, Nilsen T, Ødegård I, Langsrud T, Brendehaug J, Nes IF (2002) Bacteriocins of propionic acid bacteria. Le Lait 82:59–68CrossRefGoogle Scholar
  64. Huang Y, Adams MC (2003) An in vitro model for investigating intestinal adhesion of potential dairy propionibacteria probiotic strains using cell line C2BBe1. Lett Appl Microbol 36:213–216CrossRefGoogle Scholar
  65. Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260CrossRefGoogle Scholar
  66. Huang Y, Kotula L, Adams MC (2003) The in vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem Toxicol 41:1781–1787CrossRefGoogle Scholar
  67. Hugenholtz J, Hunik J, Santos H, Smid E (2002) Nutraceutical production by propionibacteria. Le Lait 82:103–112CrossRefGoogle Scholar
  68. Hugenschmidt S, Schwenninger SM, Gnehm N, Lacroix C (2010) Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. Int Dairy J 20:852–857CrossRefGoogle Scholar
  69. Iyer R, Tomar SK (2009) Folate: a functional food constituent. J Food Sci 74:R114–R122CrossRefGoogle Scholar
  70. Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188CrossRefGoogle Scholar
  71. Jiang J, Bjorck L, Fonden R (1998) Production of conjugated linoleic acid by dairy starter cultures. J Appl Microbiol 85:95–102CrossRefGoogle Scholar
  72. Kaneko T, Mori H, Iwata M, Meguro S (1994) Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Res 77:393–404CrossRefGoogle Scholar
  73. Kekkonen RA, Lummela N, Karjalainen H, Latvala S, Tynkkynen S, Järvenpää S, Kautiainen H, Julkunen I, Vapaatalo H, Korpela R (2008) Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults. World J Gastroenterol 14:2029–2036CrossRefGoogle Scholar
  74. Khan MM, Mir NA (2011) Production of vitamin B12 by improved strains of Propionibacterium freudenreichii. Biotechnol Bioinf Bioeng 1:19–24Google Scholar
  75. Kiatpapan P, Phonghatsabun M, Yamashita M, Murooka Y, Panbangred W (2011) Production of 5-aminolevulinic acid by Propionibacterium acidipropionici TISTR442. J Biosci Bioeng 111:425–428CrossRefGoogle Scholar
  76. Kirjavainen PV, ElNezami HS, Salminen SJ, Ahokas JT, Wright PFA (1999) Effects of orally administered viable Lactobacillus rhamnosus GG and Propionibacterium freudenreichii subsp. shermanii JS on mouse lymphocyte proliferation. Clini Diagn Lab Immunol 6:799–802Google Scholar
  77. Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J Am Oil Chem Soc 79:159–163CrossRefGoogle Scholar
  78. Kośmider A, Białas W, Kubiak P, Drożdżyńska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresour Technol 105:128–133CrossRefGoogle Scholar
  79. Kouya T, Misawa K, Horiuchi M, Nakayama E, Deguchi H, Tanaka T, Taniguchi M (2007) Production of extracellular bifidogenic growth stimulator by anaerobic and aerobic cultivations of several propionibacterial strains. J Biosci Bioeng 103:464–471CrossRefGoogle Scholar
  80. Kusano K, Yamada H, Niwa M, Yamasato K (1997) Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant omega-cyclohexyl fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825–831CrossRefGoogle Scholar
  81. Lan A, Bruneau A, Philippe C, Rochet V, Rouault A, Herve C, Roland N, Rabot S, Jan G (2007) Survival and metabolic activity of selected strains of Propionibacterium freudenreichii in the gastrointestinal tract of human microbiota-associated rats. Br J Nutr 97:714–724CrossRefGoogle Scholar
  82. Lan A, Bruneau A, Bensaada M, Philippe C, Bellaud P, Rabot S, Jan G (2008) Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1, 2-dimethylhydrazine. Br J Nutr 100:1251–1259CrossRefGoogle Scholar
  83. Langler JE, Libbey LM, Day EA (1967) Identification and evaluation of selected compounds in Swiss cheese flavor. J Agric Food Chem 15:386–391CrossRefGoogle Scholar
  84. LeBlanc JG, Rutten G, Bruinenberg P, Sesma F, de Giori GS, Smid EJ (2006) A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 22:645–651CrossRefGoogle Scholar
  85. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez G, de Giori GS, Sesma F (2011) B-Group vitamin production by lactic acid bacteria -current knowledge and potential applications. J Appl Microbiol 111:1297–1309CrossRefGoogle Scholar
  86. Lewis VP, Yang ST (1992) Propionic acid fermentation by Propionibacterium acidipropionici: effect of growth substrate. Appl Microbiol Biot 37:437–442CrossRefGoogle Scholar
  87. Liang ZX, Li L, Li S, Cai YH, Yang ST, Wang JF (2012) Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Bioproc Biosyst Eng 35:915–921CrossRefGoogle Scholar
  88. Lin TY, Lin CW, Wang YJ (2002) Linoleic acid isomerase activity in enzyme extracts from Lactobacillus acidophilus and Propionibacterium freudenreichii ssp. shermanii. J Food Sci 67:1502–1505CrossRefGoogle Scholar
  89. Lind H, Jonsson H, Schnürer J (2005) Antifungal effect of dairy propionibacteria—contribution of organic acids. Int J Food Microbiol 98:157–165CrossRefGoogle Scholar
  90. Lind H, Sjögren J, Gohil S, Kenne L, Schnürer J, Broberg A (2007) Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiol Lett 271:310–315CrossRefGoogle Scholar
  91. Liu Y, Zhang YG, Zhang RB, Zhang F, Zhu J (2011) Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici. Curr Microbiol 62:152–158CrossRefGoogle Scholar
  92. Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol. doi: 10.3109/07388551.2011.651428
  93. Lyon WJ, Glatz BA (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microb 59:83–88Google Scholar
  94. Lyon WJ, Sethi JK, Glatz BA (1993) Inhibition of psychrotrophic organisms by propionicin PLG-1, a bacteriocin produced by Propionibacterium thoenii. J Dairy Res 76:1506–1513CrossRefGoogle Scholar
  95. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285CrossRefGoogle Scholar
  96. Marwaha SS, Sethi RP, Kennedy JF (1983) Influence of 5, 6-dimethylbenzimidazole (DMB) on vitamin B12 biosynthesis by strains of Propionibacterium. Enzym Microb Technol 5:361–364CrossRefGoogle Scholar
  97. Meile L, Le Blay G, Thierry A (2008) Safety assessment of dairy microorganisms: propionibacterium and Bifidobacterium. Int J Food Microbiol 126:316–320CrossRefGoogle Scholar
  98. Merry RJ, Davies DR (1999) Propionibacteria and their role in the biological control of aerobic spoilage in silage. Le Lait 79:149–164CrossRefGoogle Scholar
  99. Miescher S, Stierli MP, Teuber M, Meile L (2000) Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Syst Appl Microbiol 23:174–184CrossRefGoogle Scholar
  100. Moussavi M, Adams MC (2010) An in vitro study on bacterial growth interactions and intestinal epithelial cell adhesion characteristics of probiotic combinations. Curr Microbiol 60:327–335CrossRefGoogle Scholar
  101. Myllyluoma E, Ahonen AM, Korpela R, Vapaatalo H, Kankuri E (2008) Effects of multispecies probiotic combination on Helicobacter pylori infection in vitro. Clin Vaccine Immunol 15:1472–1482CrossRefGoogle Scholar
  102. Niderkorn V, Boudra H, Morgavi DP (2006) Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol 101:849–856CrossRefGoogle Scholar
  103. Ouwehand AC, Tölkkö S, Kulmala J, Salminen S, Salminen E (2000) Adhesion of inactivated probiotic strains to intestinal mucus. Lett Appl Microbiol 31:82–86CrossRefGoogle Scholar
  104. Paik HD, Glatz BA (1994) Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici. Appl Microbiol Biot 42:22–27CrossRefGoogle Scholar
  105. Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y (2004) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98:167–173Google Scholar
  106. Posada JA, Cardona CA (2012) Propionic acid production from raw glycerol using commercial and engineered strains. Ind Eng Chem Res 51:2354–2361CrossRefGoogle Scholar
  107. Prince LD (1993) Detection and partial characterization of a bacteriocin, Jenseniin P, from Propionibacterium jensenii P 1264. Dissertation, Clemson UniversityGoogle Scholar
  108. Quesada-Chanto A, Afschar AS, Wagner F (1994) Microbial production of propionic acid and vitamin B12 using molasses or sugar. Appl Mcrobio Biot 41:378–383Google Scholar
  109. Quesada-Chanto A, Schmid-Meyer AC, Schroeder AG, Carvalho-Jonas MF, Blanco I, Jonas R (1998) Effect of oxygen supply on biomass, organic acids and vitamin B12 production by Propionibacterium shermanii. World J Microb Biot 14:843–846CrossRefGoogle Scholar
  110. Rainio A, Vahvaselkä M, Suomalainen T, Laakso S (2001) Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Can J Microbiol 47:735–740Google Scholar
  111. Rainio A, Vahvaselkä M, Laakso S (2002a) Cell-adhered conjugated linoleic acid regulates isomerization of linoleic acid by resting cells of Propionibacterium freudenreichii. Appl Microbiol Biotechnol 60:481–484CrossRefGoogle Scholar
  112. Rainio A, Vahvaselkä M, Suomalainen T, Laakso S (2002b) Production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Le Lait 82:91–101CrossRefGoogle Scholar
  113. Rehn U, Vogensen FK, Persson SE, Hallin Saedén K, Nilsson BF, Ardo Y (2011) Influence of microflora on texture and contents of amino acids, organic acids, and volatiles in semi-hard cheese made with DL-starter and propionibacteria. J Dairy Res 94:1098–1111CrossRefGoogle Scholar
  114. Ro SL, Burn M, Sandine WE (1979) Vitamin B12 and ascorbic acid in kimchi inoculated with Propionibacterium freudenreichji subsp. shermanii. J Food Sci 44:873–877CrossRefGoogle Scholar
  115. Roessner CA, Huang K, Warren MJ, Raux E, Scott AI (2002) Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148:1845–1853Google Scholar
  116. Rossi F, Dellaglio F, Peluso M, Torriani S (2000) Dairy propionibacteria: occurence-resistance to technological stresses and antagonistic properties [cheesemaking]. Ind Aliment 39:553–557Google Scholar
  117. Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181CrossRefGoogle Scholar
  118. Ruhal R, Choudhury B (2012a) Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-012-1124-y
  119. Ruhal R, Choudhury B (2012b) Use of an osmotically sensitive mutant of Propionibacterium freudenreichii subspp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. Bioresour Technol 109:131–139CrossRefGoogle Scholar
  120. Ruhal R, Aggarwal S, Choudhury B (2011) Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid. Green Chem 13:3492–3498CrossRefGoogle Scholar
  121. Santos F, Wegkamp A, De Vos WM, Smid EJ, Hugenholtz J (2008) High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74:3291–3294CrossRefGoogle Scholar
  122. Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29CrossRefGoogle Scholar
  123. Schuck P, Dolivet A, Méjean S, Hervé C, Jeantet R (2012) Spray drying of dairy bacteria: new opportunities to improve the viability of bacteria powders. Int Dairy J. doi:
  124. Scimeca JA, Miller GD (2000) Potential health benefits of conjugated linoleic acid. J Am Coll Nutr 19:470S–471SGoogle Scholar
  125. Sonhom R, Thepsithar C, Jongsareejit B (2012) High level production of 5-aminolevulinic acid by Propionibacterium acidipropionici grown in a low-cost medium. Biotechnol Lett 1–6. doi:
  126. Suomalainen T, Sigvart-Mattila P, Mättö J, Tynkkynen S (2008) In vitro and in vivo gastrointestinal survival, antibiotic susceptibility and genetic identification of Propionibacterium freudenreichii ssp. shermanii JS. Int Dairy J 18:271–278CrossRefGoogle Scholar
  127. Suwannakham S, Yang ST (2005) Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous bed bioreactor. Biotechnol Bioeng 91:325–337CrossRefGoogle Scholar
  128. Suwannakham S, Huang Y, Yang ST (2006) Construction and characterization of ack knockout mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng 94:383–395CrossRefGoogle Scholar
  129. Tawfik NF, Sharaf OM, Effat BA, Mahanna NS (2004) Preserving Domiati cheese using metabolites of Propionibacterium thoenii P-127. Pol J Food Nutr Sci 13:269–272Google Scholar
  130. Thierry A, Maillard MB (2002) Production of cheese flavour compounds derived from amino acid catabolism by Propionibacterium freudenreichii. Le Lait 82:17–32CrossRefGoogle Scholar
  131. Thierry A, Maillard MB, Bonnarme P, Roussel E (2005) The addition of Propionibacterium freudenreichii to Raclette cheese induces biochemical changes and enhances flavor development. J Agric Food Chem 53:4157–4165CrossRefGoogle Scholar
  132. Thierry A, Deutsch SM, Falentin H, Dalmasso M, Cousin FJ, Jan G (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 149:19–27CrossRefGoogle Scholar
  133. Thirupathaiah Y, Rani CS, Reddy MS, Rao LV (2012) Effect of chemical and microbial vitamin B12 analogues on production of vitamin B12. World J Microbiol Biotechnol. doi: 10.1007/s11274-012-1011-8
  134. Uchida M, Mogami O, Matsueda K (2007) Characteristic of milk whey culture with Propionibacterium freudenreichii ET-3 and its application to the inflammatory bowel disease therapy. Inflammopharmacology 15:105–108CrossRefGoogle Scholar
  135. Uchida M, Tsuboi H, Nemoto A, Seki K, Tsunoo H, Martyres S, Roberts A (2011a) Safety of high doses of Propionibacterium freudenreichii ET-3 culture in healthy adult subjects. Regul Toxicol Pharmacol 60:262–267CrossRefGoogle Scholar
  136. Uchida M, Yoda N, Terahara M, Seki K, Choi SSH, Roberts A (2011b) Safety evaluation of Propionibacterium freudenreichii ET-3 culture. Regul Toxicol Pharmacol 60:249–261CrossRefGoogle Scholar
  137. Vahvaselkä M, Lehtinen P, Sippola S, Laakso S (2004) Enrichment of conjugated linoleic acid in oats (Avena sativa L.) by microbial isomerization. J Agric Food Chem 52:1749–1752CrossRefGoogle Scholar
  138. Vahvaselkä M, Lehtinen P, Laakso S (2006) Microbially safe utilization of non-inactivated oats (Avena sativa L.) for production of conjugated linoleic acid. J Agric Food Chem 54:963–967CrossRefGoogle Scholar
  139. Van der Merwe IR, Bauer R, Britz TJ, Dicks LMT (2004) Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. Int J Food Microbiol 92:153–160CrossRefGoogle Scholar
  140. Van Wyk J, Britz TJ (2012) A rapid high-performance liquid chromatography (HPLC) method for the extraction and quantification of folates in dairy products and cultures of Propionibacterium freudenreichii. Afr J Biotechnol 11:2087–2098Google Scholar
  141. Van Wyk J, Witthuhn RC, Britz TJ (2011) Optimisation of vitamin B12 and folate production by Propionibacterium freudenreichii strains in kefir. Int Dairy J 21:69–74CrossRefGoogle Scholar
  142. Vorob’eva LI, Khodzhaev EY, Ponomareva GM (2001) An extracellular protein of propionic acid bacteria inhibits induced mutations in Salmonella typhimurium strains. Microbiology 70:31–35CrossRefGoogle Scholar
  143. Wang G (2010) Further purification and characterization of jenseniin P, a bacteriocin produced by Propionibacterium jensenii B1264. Dissertation, Clemson UniversityGoogle Scholar
  144. Wang LM, Lv JP, Chu ZQ, Cui YY, Ren XH (2007) Production of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chem 103:313–318CrossRefGoogle Scholar
  145. Warminska-Radyko I, Laniewska-Moroz L, Babuchowski A (2002) Possibilities for stimulation of Bifidobacterium growth by propionibacteria. Le Lait 82:113–121CrossRefGoogle Scholar
  146. Weinbrenner DR, Barefoot SF, Grinstead DA (1997) Inhibition of yogurt starter cultures by Jenseniin G, a Propionibacterium bacteriocin. J Dairy Res 80:1246–1253CrossRefGoogle Scholar
  147. Wood HG (1981) Metabolic cycles in the fermentation by propionic acid bacteria. Curr Top Cell Regul 18:255–287Google Scholar
  148. Woskow SA, Glatz BA (1991) Propionic acid production by a propionic acid-tolerant strain of Propionibacterium acidipropionici in batch and semicontinuous fermentation. Appl Environ Microb 57:2821–2828Google Scholar
  149. Wu QQ, You HJ, Ahn HJ, Kwon B, Ji GE (2012) Changes in growth and survival of Bifidobacterium by coculture in soy milk, cow’s milk, and modified MRS medium. Int J Food Microbiol 157:65–72CrossRefGoogle Scholar
  150. Yang ST, Zhu H, Li Y, Hong G (1994) Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol Bioeng 43:1124–1130CrossRefGoogle Scholar
  151. Yang ST, Huang Y, Hong G (1995) A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose. Biotechnol Bioeng 45:379–386CrossRefGoogle Scholar
  152. Ye K, Shijo M, Jin S, Shimizu K (1996) Efficient production of vitamin B12 from propionic acid bacteria under periodic variation of dissolved oxygen concentration. J Ferment Bioeng 82:484–491CrossRefGoogle Scholar
  153. Zárate G, Chaia AP (2012) Influence of lactose and lactate on growth and β-galactosidase activity of potential probiotic Propionibacterium acidipropionici. Anaerobe 18:25–30CrossRefGoogle Scholar
  154. Zárate G, Pérez Chaia A (2012) Feeding with dairy Propionibacterium acidipropionici CRL 1198 reduces the incidence of Concanavalin-A induced alterations in mouse small intestinal epithelium. Food Res Int 47:13–22CrossRefGoogle Scholar
  155. Zárate G, Chaia AP, Gonzalez S, Oliver G (2000a) Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Protect 63:1214–1221Google Scholar
  156. Zárate G, Gonzalez S, Chaia AP, Oliver G (2000b) Effect of bile on the β-galactosidase activity of dairy propionibacteria. Le Lait 80:267–276CrossRefGoogle Scholar
  157. Zárate G, Chaia AP, Oliver G (2002a) Some characteristics of practical relevance of the beta-galactosidase from potential probiotic strains of Propionibacterium acidipropionici. Anaerobe 8:259–267CrossRefGoogle Scholar
  158. Zárate G, De Ambrosini VM, Chaia AP, González S (2002b) Some factors affecting the adherence of probiotic Propionibacterium acidipropionici CRL 1198 to intestinal epithelial cells. Can J Microbiol 48:449–457CrossRefGoogle Scholar
  159. Zárate G, Morata AVI, Perez CA, Gonzalez SN (2002c) Adhesion of dairy propionibacteria to intestinal epithelial tissue in vitro and in vivo. J Food Protect 65:534–539Google Scholar
  160. Zhang A, Yang ST (2009a) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773Google Scholar
  161. Zhang A, Yang ST (2009b) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 44:1346–1351CrossRefGoogle Scholar
  162. Zhang Y, Liu JZ, Huang JS, Mao ZW (2010a) Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. J Biotechnol 148:139–143CrossRefGoogle Scholar
  163. Zhang Z, Cao J, Luo Y, Wu X, Wan Q (2010b) Study on CLA production from sesame oil by Propionibacterium shermanii. Food Sci Technol 01:13Google Scholar
  164. Zhu Y, Li J, Tan M, Liu L, Jiang L, Sun J, Lee P, Du G, Chen J (2010) Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol 101:8902–8906CrossRefGoogle Scholar
  165. Zhu L, Wei P, Cai J, Zhu X, Wang Z, Huang L, Xu Z (2012) Improving the productivity of propionic acid with FBB-immobilized cells of an adapted acid-tolerant Propionibacterium acidipropionici. Bioresour Technol 112:248–253Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Poonam
    • 1
  • Sarang Dilip Pophaly
    • 1
  • Sudhir Kumar Tomar
    • 1
  • Sachinandan De
    • 2
  • Rameshwar Singh
    • 1
  1. 1.Dairy Microbiology DivisionNational Dairy Research InstituteKarnalIndia
  2. 2.Animal Biotechnology CentreNational Dairy Research InstituteKarnalIndia

Personalised recommendations