Advertisement

World Journal of Microbiology and Biotechnology

, Volume 28, Issue 10, pp 2997–3006 | Cite as

Biodegradation of drotaverine hydrochloride by free and immobilized cells of Rhodococcus rhodochrous IEGM 608

  • I. B. Ivshina
  • E. V. Vikhareva
  • M. I. Richkova
  • A. N. Mukhutdinova
  • Ju. N. Karpenko
Original Paper

Abstract

Drotaverine [1-(3,4-diethoxybenzylidene)-6,7-diethoxy-1,2,3,4-tetrahydroisoquinoline] hydrochloride, an antispasmodic drug derived from benzylisoquinoline was evaluated for its biodegradability using a bacterial strain Rhodococcus rhodochrous IEGM 608. The experiments were performed under aerobic conditions with rhodococci cultures able to degrade drotaverine. In the presence of glucose, the removal efficiency of drotaverine by free Rhodoccocus cells pre-grown with isoquinoline was above 80 % (200 mg/l, initial concentration) after 25 days. Rhodococcus immobilization on hydrophobized sawdust enhanced the biodegradation process, with the most marked drotaverine loss being observed during the first 5 days of fermentation. High metabolic activity of rhodococcal cells towards drotaverine was confirmed respirometrically. GC–MS analysis of transformation products resulting from drotaverine biodegradation revealed 3,4-diethoxybenzoic acid, 3,4-diethoxybenzaldehyde and 3,4-diethoxybenzoic acid ethyl ester which were detected in the culture medium until drotaverine completely disappeared. Based on these major and other minor metabolites, putative pathways for drotaverine biodegradation were proposed. The obtained data broadened the spectrum of organic xenobiotics oxidized by Rhodoccocus bacteria and proved their potential in decontamination of natural ecosystems from pharma pollutants.

Keywords

Pharmaceuticals Drotaverine hydrochloride Biodegradation Cell immobilization Rhodococcus rhodochrous 

Notes

Acknowledgments

The research was supported by the grants of the Russian Academy of Sciences Presidium Programme “Leaving Nature: Current State and Development Problems” and Russian Federal Targeted Programme “Research and Developments in Priority Fields of S&T Complex of Russia” (State Contract No. 16.518.11.7069).

References

  1. Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184CrossRefGoogle Scholar
  2. Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Pharmaceutical and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci Total Environ 311:35–149CrossRefGoogle Scholar
  3. Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol Biotechnol 16:79–101Google Scholar
  4. Catalogue of Strains of Regional Specialized Collection of Alkanotrophic Microorganisms (2011) http://www.iegm.ru/iegmcol/strains/ 29.01.2011
  5. Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41CrossRefGoogle Scholar
  6. de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726CrossRefGoogle Scholar
  7. Duca G, Boldescu V (2009) Pharmaceuticals and personal care products in the environment. In: Bahadir AM, Duca G (eds) The role of ecological chemistry in pollution research and sustainable development. Springer Science and Business Media B.V, Dordrecht, pp 27–35CrossRefGoogle Scholar
  8. Endreffy E, Boda D (1983) Effect of drugs used in obstetrics on the constriction of the ductus arteriosus of the rabbit fetus. Acta Paediatr Hung 24:281–286Google Scholar
  9. Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408:701–1706CrossRefGoogle Scholar
  10. Griffin RJ, Srinivasan S, Bowman K, Calvert AH, Curtin NJ, Newell DR, Pemberton LC, Golding BT (1998) Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). J Med Chem 41:5247–5256CrossRefGoogle Scholar
  11. Halling-Sørensen B, Nielsen SN, Lansky PF, Ingerslev F, Lutzhoft HCH, Jorgensen SE (1998) Occurrence, fate, and effects of pharmaceutical substances in the environment: a review. Chemosphere 36:357–393CrossRefGoogle Scholar
  12. Hauer B, Haase-Aschoff K, Lingens F (1982) Papaverine degradation with papaverine mutants of a Nocardia sp. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 363:507–513CrossRefGoogle Scholar
  13. Ivshina IB, Rychkova MI, Vikhareva EV, Chekryshkina LA, Mishenina II (2006) Catalysis of the biodegradation of unusable medicines by alkanotrophic rhodococci. Appl Biochem Microbiol 42(4):392–395CrossRefGoogle Scholar
  14. Ivshina IB, Kamenskikh TN, Anokhin BA (2007) Adaptive mechanisms of alkanotrophic rhodococci survival under unfavorable conditions. Bulletin of Perm University. Biology 5(10):107–112Google Scholar
  15. Ivshina IB, Rychkova MI, Vikhareva EV, Necheukhina TA, Selyaninov AA (2009) Optimization of biodestruction of unsound phenol-derived drugs. Bulletin of Perm University. Biology 10(36):136–140Google Scholar
  16. Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35:401–427CrossRefGoogle Scholar
  17. Jørgensen SE, Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40(7):691–699CrossRefGoogle Scholar
  18. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams 1999–2000:a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  19. Kuyukina MS, Ivshina IB (2010) Rhodococcus biosurfactants: biosynthesis, properties and potential applications. In: Alvarez HM (ed) Biology of Rhodococcus. Microbiol Monogr. Springer, Berlin, 16, pp 291–313Google Scholar
  20. Kuyukina MS, Ivshina IB, Gavrin AYu, Podorozhko EA, Lozinsky VI, Jeffree CE, Philp JC (2006) Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alchohol) cryogels hydrophobized using a biosurfactant. J Microbiol Meth 65:596–600CrossRefGoogle Scholar
  21. Larkin MJ, Kulakov LA, Allen CR (2006) Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59:1–29CrossRefGoogle Scholar
  22. Li Y, Wang L, Liao L, Sun L, Zheng G, Luan J, Gu G (2010) Nitrate-dependent biodegradation of quinoline, isoquinoline, and 2-methylquinoline by acclimated activated sludge. J Hazard Mater 173(1–3):151–158Google Scholar
  23. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefGoogle Scholar
  24. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234CrossRefGoogle Scholar
  25. O’Loughlin EJ, Kehrmeyer SR, Sims GK (1996) Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium. Int Biodeterior Biodegradation 38:107–118CrossRefGoogle Scholar
  26. Padoley KV, Mudliar SN, Pandey SA (2008) Heterocyclic nitrogenous pollutants in the environment and their treatment options –an overview Review. Bioresour Technol 99:4029–4043CrossRefGoogle Scholar
  27. Podorozhko EA, Kuyukina MS, Ivshina IB, Philp JC, Lozinsky VI (2007) Formulation of a carrier for immobilized hydrocarbon-degrading microorganisms, and a method for carrier production. Patent RUS2298033Google Scholar
  28. Podorozhko EA, Lozinsky VI, Ivshina IB, Kuyukina MS, Krivorutchko AV, Philp JC, Cunningham CJ (2008) Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber. Bioresour Technol 99(6):2001–2008CrossRefGoogle Scholar
  29. Röger P, Erben A, Lingens F (1990) Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7. Biol Chem HoppeSeyler 371(6):511–513CrossRefGoogle Scholar
  30. Schröder P, Navarro-Aviňó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuileumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res 14:490–497CrossRefGoogle Scholar
  31. Tiwari AK, Shah H, Rajpoot A, Singhal M (2011) Formulation and in vitro evaluation of immediate release tablets of drotaverine HCl. J Chem Pharm Res 3(4):333–341Google Scholar
  32. van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87Google Scholar
  33. Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54(8):375–429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • I. B. Ivshina
    • 1
    • 2
  • E. V. Vikhareva
    • 3
  • M. I. Richkova
    • 1
  • A. N. Mukhutdinova
    • 1
  • Ju. N. Karpenko
    • 3
  1. 1.Institute of Ecology and Genetics of MicroorganismsRussian Academy of SciencesPermRussia
  2. 2.Perm State National Research UniversityPermRussia
  3. 3.Perm State Pharmaceutical AcademyPermRussia

Personalised recommendations