World Journal of Microbiology and Biotechnology

, Volume 28, Issue 9, pp 2771–2782 | Cite as

Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality

  • Jasna MrvčićEmail author
  • Damir Stanzer
  • Ema Šolić
  • Vesna Stehlik-Tomas


Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed.


Lactic acid bacteria Metal ions Trace elements Biosorption Detoxification Biotransformation 



The authors are grateful for financial support from The Ministry of Science and Technology of Republic Croatia.


  1. Alzate A, Cañas B, Pérez-Munguía S, Hernández-Mendoza H, Pérez-Conde C, Gutiérrez AM, Cámara C (2007) Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J Agric Food Chem 55(24):9776–9783CrossRefGoogle Scholar
  2. Alzate A, Fernández-Fernández A, Pérez-Conde C, Gutiérrez AM, Cámara C (2008) Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kerfir. J Agric Food Chem 56:8728–8736CrossRefGoogle Scholar
  3. Andreoni V, Luischi MM, Cavalca L, Erba D, Ciappellano S (2000) Selenite tolerance and accumulation in the L. species. Ann Microbiol 50(1):77–88Google Scholar
  4. Araúz IL, Afton S, Wrobel K, Caruso JA, Corona JF, Wrobel K (2008) Study on the protective role of selenium against cadmium toxicity in LAB: an advanced application of ICP-MS. J Hazard Mater 153(3):1157–1164CrossRefGoogle Scholar
  5. Archibald FS, Fridovich I (1981) Manganese and defenses against oxygen toxicity in L. plantarum. J Bacteriol 145(1):442–451Google Scholar
  6. Battikh E, Safa A, Niccola MK, Aagha SI (2011) Effect of Cd and Lactobacillus levels on iron concentration in different organs and meat of broiler chicken. J Univ Chem Technol Metal 46(4):381–388Google Scholar
  7. Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584CrossRefGoogle Scholar
  8. Blanusa M, Varnai VM, Piasek M, Kostial K (2005) Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem 12(23):2771–2794CrossRefGoogle Scholar
  9. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium L. lactis ssp. lactis IL1403. Genome Res 11:731–753CrossRefGoogle Scholar
  10. Bryszewska MA, Ambroziak W, Diowksz A, Baxter MJ, Langford NJ, Lewis DJ (2005) Changes in the chemical form of selenium observed during the manufacture of a selenium-enriched sourdough bread for use in a human nutrition study. Food Addit Contam 22(2):135–140CrossRefGoogle Scholar
  11. Bryszewska MA, Ambroziak W, Langford NJ, Baxter MJ, Colyer A, Lewis DJ (2007) The effect of consumption of selenium enriched rye/wheat sourdough bread on the body’s selenium status. Plant Foods Hum Nutr 62(3):121–126CrossRefGoogle Scholar
  12. Calomme MR, Van den Branden K, Vanden Berghe DA (1995a) Selenium and Lactobacillus species. J Appl Bacteriol 79:331–340CrossRefGoogle Scholar
  13. Calomme MR, Van den Branden K, Vanden Berghe DA (1995b) Seleno-Lactobacillus. An organic selenium source. Biol Trace Elem Res 47:379–384CrossRefGoogle Scholar
  14. Chen L, Pan D, Zhou J, Jiang YZ (2005) Protective effect of selenium-enriched lactobacillus on CCl4-induced liver injury in mice and it mechanisms. World J Gastroenterol 11(37):5795–5800Google Scholar
  15. Chojnacka K, Mikulewicz M, Cieplik J (2011) Biofortification off food with microelements. Am J Agric Biol Sci 6(4):544–548CrossRefGoogle Scholar
  16. Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380CrossRefGoogle Scholar
  17. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosyntesis and functionality of the cell: wall of lactic acid bacteria. Universite Catolique de Louvain, Unite de Genetique, Croix du Sud 5, B-1348 Louvain-la-Neuve, BelgiumGoogle Scholar
  18. Diowksz A, Ambroziak W, Wladarezyk M (1999) Investigation of ability of selenium accumulation by lactic acid bacteria of Lactobacillus sp. and yeast S. cerevisiae. Pol J Food Nutr Sci 49(1):17–21Google Scholar
  19. Dobrzanski Z, Jamroz D (2003) Bioavailability of selenium and zinc supplied to the feed for laying hens in organic and inorganic form. EJPAU 6:1–8Google Scholar
  20. Duhutrel P, Bordat C, Wu TD, Zagorec M, Guerquin-Kern JL, Champomier-Vergès MC (2012) Iron sources used by the nonpathogenic lactic acid bacterium L. sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry. Appl Environ Microbiol 78(11):560–565Google Scholar
  21. El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J (1998) Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J Food Prot 61(4):466–468Google Scholar
  22. Frece J, Kos B, Beganovic J, Vukovic S, Suskovic J (2005) In vivo testing of functional properties of three selected probiotic strains. World J Microbiol Biotechnol 21:1401–1408CrossRefGoogle Scholar
  23. Gerbino E, Mobili P, Tymczyszyn E, Fausto R, Gomez-Zavaglia A (2011) FTIR spectroscopy structural analysis of the interaction between L. kefir S-layers and metal ions. J Mol Struct 987(1–3):186–192CrossRefGoogle Scholar
  24. Gulan-Zetić V, Stehlik-Tomas V, Grba S, Lutilsky L, Kozlek D (2001) Chromium uptake by S. cerevisiae and isolation of glucose tolerance factor from yeast biomass. J Biosci 26(2):217–223CrossRefGoogle Scholar
  25. Halttunen T, Kankaanpaa P, Tahvonen R, Salminen S, Ouwehand AC (2003) Cadmium removal by specific lactic acid bacteria. Biosci Microflora 22(3):93–97Google Scholar
  26. Halttunen T, Salminen S, Tahvonen R (2007a) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35CrossRefGoogle Scholar
  27. Halttunen T, Finell M, Salminen S (2007b) Arsenic removal by native and chemically modified lactic acid bacteria. Int J Food Microbiol 120(1–2):173–178CrossRefGoogle Scholar
  28. Halttunen T, Salminen S, Meriluoto J, Tahvonen R (2008a) Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int J Food Microbiol 125(2):170–175CrossRefGoogle Scholar
  29. Halttunen T, Collado MC, El-Nezami H, Meriluoto J, Salminen S (2008b) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46:160–165CrossRefGoogle Scholar
  30. Heyland DK, Dhaliwal R, Suchner U, Berger MM (2005) Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med 31:327–337CrossRefGoogle Scholar
  31. Ibrahim F, Halttunen T, Tahvonen R, Salminen S (2006) Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol 52:877–885CrossRefGoogle Scholar
  32. Imbert M, Blondeau R (1998) On the iron requirement of Lactobacilli grown in chemically defined medium. Curr Microbiol 37:64–66CrossRefGoogle Scholar
  33. Lamberti C, Mangiapane E, Pessione A, Mazzoli R, Giunta C, Pessione E (2011) Proteomic characterization of a selenium-metabolizing probiotic L. reuteri Lb2 BM for nutraceutical applications. Proteomics 11(11):2212–2221CrossRefGoogle Scholar
  34. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Tech 15(2):67–78CrossRefGoogle Scholar
  35. Lin Z, Zhou C, Wu J, Zhou J, Wang L (2005) A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. Strain A09. Spectrochim Acta, Part A 61:1195–1200CrossRefGoogle Scholar
  36. Liu W, Deng Z, Xu E, Li M (2006) Bioconcentrating trace elements of selenium, chromium and zinc by L. bulgaricus. Food Sci Technol 2:135–137Google Scholar
  37. Llull D, Son O, Blanié S, Briffotaux J, Morello E, Rogniaux H, Danot O, Poquet I (2011) Lactococcus lactis ZitR is a zinc-responsive repressor active in the presence of low, nontoxic zinc concentrations in vivo. J Bacteriol 193(8):1919–1929CrossRefGoogle Scholar
  38. Mazo VK, Gmoshinski IV, Zorin SN (2007) New food sources of essential trace elements produced by biotechnology facilities. Biotechnol J 2(10):1297–1305CrossRefGoogle Scholar
  39. Mrvcic J, Stanzer D, Stehlik-Tomas V, Skevin D, Grba S (2007) Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism S. cerevisiae. J Biosci Bioeng 103(4):331–337CrossRefGoogle Scholar
  40. Mrvcic J, Stehlik-Tomas V, Grba S (2008) Incorporation of copper ions by yeast K. marxianus during cultivation on whey. Acta Aliment 37(1):133–139CrossRefGoogle Scholar
  41. Mrvčić J, Prebeg T, Barišić L, Stanzer D, Bačun-Družina V, Stehlik-Tomas V (2009a) Zinc binding by lactic acid bacteria. Food Technol Biotechnol 47(4):381–388Google Scholar
  42. Mrvčić J, Stanzer D, Bačun-Družina V, Stehlik-Tomas V (2009b) Copper binding by lactic acid bacteria (LAB). Biosci Microflora 28(1):1–6Google Scholar
  43. Mrvčić J, Šolić E, Butorac A, Stanzer D, Bačun-Družina V, Stehlik-Tomas V (2011) The effect of metal ions supplementation on growth and binding capacity of lactic acid bacteria/7th international congress of food technologists, biotecnologists and nutritionist/Medić, H. (ur.). Zagreb: Baris, Zaprešić, 67–67Google Scholar
  44. Mudgal V, Madaan N, Anurag Mudgal RB, Mishra SS (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3:94–99CrossRefGoogle Scholar
  45. Mudronova D, Nemecova R, Gancarčikova S, Bomba A, Gyoryova K (2004) Influence of Zn2+ and Lactobacillus plantarum CCM 7102 on the composition microflora in laboratory mice. University of veterinary medicine, Komenskeho 73, 041 81 Košice, Slovak RepublicGoogle Scholar
  46. Naumann D, Helm D, Labischinski H, Giesbrecht P (1991) The characterization of microorganism by Fourier-transform infrared spectroscopy. In: Nelson WH (ed) Modern techniques for rapid microbiological analysis. VCH, New York, pp 43–96Google Scholar
  47. Nielsen MM, Damstrup ML, Thomsen A, Kjærsg S, Hansen R (2007) Phytase activity and degradation of phytic acid during rye bread making. Eur Food Res Technol 225:173–181CrossRefGoogle Scholar
  48. Pandey A, Bringel F, Meyer JM (1994) Iron requirement and search for siderophores in lactic acid bacteria. Appl Microbiol Biotechnol 40:735–739CrossRefGoogle Scholar
  49. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):776–806CrossRefGoogle Scholar
  50. Peñas E, Martinez-Villaluenga C, Frias J, Sánchez-Martínez MJ, Pérez-Corona MT, Madrid Y, Cámara C, Vidal-Valverde C (2012) Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chem 132(2):907–914CrossRefGoogle Scholar
  51. Pérez-Corona MT, Sánchez-Martínez M, Valderrama MJ, Rodríguez ME, Cámara C, Madrid Y (2011) Se biotransformation by S. cerevisiae and S. bayanus during white wine manufacture: lab-scale experiments. Food Chem 124:1050–1055CrossRefGoogle Scholar
  52. Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92:557–573CrossRefGoogle Scholar
  53. Rodriguez LM, Alatossava T (2008) Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. J Appl Microbiol 105:1098–1106CrossRefGoogle Scholar
  54. Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171CrossRefGoogle Scholar
  55. Salim AB, Badawy IH, Kassem SS (2011) Effect of lactic acid bacteria against heavy metals toxicity in rats. J Am Sci 7(4):264–274Google Scholar
  56. Schut S, Zauner S, Hampel G, König H, Claus H (2011) Biosorption of copper by wine-relevant lactobacilli. Int J Food Microbiol 145(1):126–131CrossRefGoogle Scholar
  57. Simić D, Budić I (2003) Trace elements. Acta Fac Med Naiss 20(4):189–202Google Scholar
  58. Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14CrossRefGoogle Scholar
  59. Stefanidou M, Maravelias C, Dona A, Spilliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1–9CrossRefGoogle Scholar
  60. Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS (2008) Potential impacts of iron biofortification in India. Soc Sci Med 66:1797–1808CrossRefGoogle Scholar
  61. Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched S. cerevisiae. J Trace Elem Med Biol 14:43–47CrossRefGoogle Scholar
  62. Urban PL, Kuthan RT (2004) Application of probiotics in the xenobiotic detoxification therapy. Nukleonika 49:43–45Google Scholar
  63. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291CrossRefGoogle Scholar
  64. Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Tech 5(2):179–182Google Scholar
  65. Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by S. cerevisae. Appl Microbiol Biotechnol 42:797–806CrossRefGoogle Scholar
  66. Wang J, Chen C (2009) Biosorbent of heavy metals removal and their future. Biotechnol Adv 27:195–226CrossRefGoogle Scholar
  67. Xia KS, Chen L, Liang JQ (2007) Enriched selenium and its effects on growth and biochemical composition in L. bulgaricus. J Agric Food Chem 55:2413–2417CrossRefGoogle Scholar
  68. Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F (2009) Antibacterial action of selenium-enriched probiotics against pathogenic E. coli. Dig Dis Sci 54:246–254CrossRefGoogle Scholar
  69. Yilmaz M, Tay T, Kivanc M, Turk H (2010) Removal of copper ions from aqueous solution by lactic acid bacterium. Braz J Chem Eng 27(2):309–314CrossRefGoogle Scholar
  70. Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, Qin W, Li P, Lin F (2009) Accumulation and species distribution of selenium in Se-enriched bacterial cells of the B. animalis 01. Food Chem 115(2):727–734CrossRefGoogle Scholar
  71. Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jasna Mrvčić
    • 1
    Email author
  • Damir Stanzer
    • 1
  • Ema Šolić
    • 1
  • Vesna Stehlik-Tomas
    • 1
  1. 1.Faculty of Food Technology and BiotechnologyLaboratory for Fermentation and Yeast TechnologyZagrebCroatia

Personalised recommendations