World Journal of Microbiology and Biotechnology

, Volume 28, Issue 8, pp 2731–2740 | Cite as

Azotobacter vinelandii lacking the Na+-NQR activity: a potential source for producing alginates with improved properties and at high yield

  • Itzel Gaytán
  • Carlos Peña
  • Cinthia Núñez
  • María S. Córdova
  • Guadalupe Espín
  • Enrique Galindo
Original Paper


The mutant ATCN4 strain of Azotobacter vinelandii, which lacks the Na+-NQR activity and results in an alginate overproduction (highly mucoid phenotype), was cultured in shake flasks in minimal and rich medium, and the chemical composition and rheological properties of the alginate were determined. Mutant ATCN4 exhibited a high efficiency for sucrose conversion to alginate and PHB accumulation, reaching yields that were 3.6- and 1.6-fold higher than those obtained from the wildtype cultures in minimal medium (Burk’s sucrose, BS). The alginate produced by ATCN4 in the minimal medium had a high degree of acetylation (≥4 %) and a low G/M ratio (=2) with respect to the polymer synthesised in the rich medium (BS with yeast extract) (degree of acetylation = 0 % and G/M ratio of 4.5). The alginate produced in the minimal medium exhibited a pronounced pseudoplastic behaviour and a higher G* module in comparison to that observed in the alginate obtained in the cultures using a rich medium. The ATCN4 mutant culture in the minimal medium promoted the synthesis of a polymer of improved rheological quality in terms of its mechanical properties. These characteristics make this mutant a valuable source for producing alginates with improved or special properties.


Alginate A. vinelandii Na+-NQR activity Viscosity Degree of acetylation 



We thank Arturo Ocádiz for his excellent technical support. This research was supported by project CONACyT (131851) and project PAPIIT (IN214208) from the Universidad Nacional Autónoma de México.


  1. Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH: ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874CrossRefGoogle Scholar
  2. Castillo-Marenco T, Galindo E, Peña C (2011) Specific growth rate determines alginate acetylation and poly-β-hydroxybutyrate synthesis in Azotobacter vinelandii: Studies on chemostat cultures under constant dissolved oxygen tension. In: 1st European Congress of Applied Biotechnology, Sept 25–29 Berlin, GermanyGoogle Scholar
  3. Clementi F (1997) Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17:327–361CrossRefGoogle Scholar
  4. Clementi F, Mancini M, Moresi M (1998) Rheology of alginate from Azotobacter vinelandii in aqueous dispersions. J Food Eng 36:51–62CrossRefGoogle Scholar
  5. Díaz-Barrera, Soto E (2010) Biotechnological uses of Azotobacter vinelandii: current state, limits and prospects. Afr J Biotechnol 9(33):5240–5250Google Scholar
  6. Díaz-Barrera A, Peña C, Galindo E (2007) The oxygen transfer rate influences the molecular mass of the alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 76:903–910CrossRefGoogle Scholar
  7. Draget I, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydroc 25:251–256CrossRefGoogle Scholar
  8. Galindo E, Peña C, Núñez C, Segura D, Espín G (2007) Molecular and bioengineering strategies to improve alginate and polyhydroxyalkanoate production by Azotobacter vinelandii. Microbiol Cell Fact 6:1–16CrossRefGoogle Scholar
  9. Geddie J, Sutherland I (1994) The effect of acetylation on cation binding by algal and bacterial alginates. Biotechnol Appl Biochem 20:117–129Google Scholar
  10. Gimmestad M, Ertesvag H, Heggeset T, Aarstad O, Svanem B, Valla S (2009) Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 191:4845–4853CrossRefGoogle Scholar
  11. Hayashi M, Hirai K, Unemoto T (1995) Sequencing and the alignment of structural genes in the nqr operon encoding the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 363:75–77CrossRefGoogle Scholar
  12. Hernández R, Orive G, Murua A, Pedraz J (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Del Rev 62(7–8):711–730CrossRefGoogle Scholar
  13. Karr D, Waters J, Emerich D (1983) Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46:1339–1344Google Scholar
  14. Klimek J, Ollis D (1980) Extracellular microbial polysaccharides: kinetics of Pseudomonas sp.; Azotobacter vinelandii, and Aureobasidium pullulans batch fermentations. Biotechnol Bioeng 22:2321–2342CrossRefGoogle Scholar
  15. Knutson C, Jeanes A (1968) Determination of the composition of uronic acid mixtures. Anal Biochem 24:482–490CrossRefGoogle Scholar
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  17. Mancini M, Moresi M, Sappino F (2006) Rheological behaviour of aqueous solutions and dispersions of algal sodium alginates. J Food Eng 28:283–295CrossRefGoogle Scholar
  18. Martinsen A, Skjak-Braek G, Smidsrod O, Zanetti F, Paoletti S (1991) Comparison of different methods for determination of molecular weight and molecular weight distributions of alginates. Carbohydr Polym 15:171–193CrossRefGoogle Scholar
  19. Mejía MA, Segura D, Espín G, Galindo E, Peña C (2010) Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-beta-hydroxybutyrate (PHB) synthesis. J Appl Microbiol 108(1):55–61CrossRefGoogle Scholar
  20. Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  21. Moresi M, Mancini M, Bruno M, Rancini R (2001) Viscoelastic properties of alginate gels by oscillatory dynamic tests. J Texture Stud 32:375–396CrossRefGoogle Scholar
  22. Moresi M, Bruno M, Parente E (2004) Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. J Food Eng 64:179–186CrossRefGoogle Scholar
  23. Nakayama Y, Hayashi M, Unemoto T (1998) Identification of six subunits constituting Na+-translocating NADH: quinone reductase from the marine Vibrio alginolyticus. FEBS Lett 422:240–242CrossRefGoogle Scholar
  24. Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G (2009) The Na+-translocating NADH: ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology 155:249–256CrossRefGoogle Scholar
  25. Peña C, Campos N, Galindo E (1997) Changes in alginate molecular mass distribution, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510–515CrossRefGoogle Scholar
  26. Peña C, Trujillo-Roldán M, Galindo E (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microb Technol 27:390–398CrossRefGoogle Scholar
  27. Peña C, Miranda L, Segura D, Núñez C, Espín G, Galindo E (2002) Alginate production by Azotobacter vinelandii mutants altered in poly-beta-hydroxybutyrate and alginate biosynthesis. J Ind Microbiol Biotechnol 29(5):209–213CrossRefGoogle Scholar
  28. Peña C, Hernández L, Galindo E (2006) Manipulation of the acetylation degree of Azotobacter vinelandii alginate by supplementing the culture medium with 3-(N-morpholino)-propane-sulfonic acid. Lett Appl Microbiol 43:200–204CrossRefGoogle Scholar
  29. Peña C, Peter C, Büchs J, Galindo E (2007) Evolution of the specific power consumption and oxygen transfer rate in alginate-producing cultures of Azotobacter vinelandii conducted in shake flasks. Biochem Eng J 36:73–80CrossRefGoogle Scholar
  30. Peña C, Núñez C, Castillo-Marenco T, Segura D (2011a) Bioprocess design: fermentation strategies for improving the production of alginate and poly-β-hydroxybutyrate (PHB) by Azotobacter vinelandii. In: Bioengineering, Ed. Angelo Carpi, Intech Open Access Publisher ISBN: 978-953-307-268-5, pp 217–242Google Scholar
  31. Peña C, Galindo E, Büchs J (2011b) The viscosifying power, degree acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Proc Biochem 46:290–297CrossRefGoogle Scholar
  32. Rich PR, Meunier B, Ward FB (1995) Predicted structure and possible ionmotive mechanism of the sodium-linked NADH: ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375:5–10CrossRefGoogle Scholar
  33. Sabra W, Zeng A-P, Deckwer W-D (2001) Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol 56:315–325CrossRefGoogle Scholar
  34. Segura D, Guzmán J, Espín G (2003) Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63(2):159–163CrossRefGoogle Scholar
  35. Skjåk-Bræk G, Grasdalen H, Larsen B (1986) Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res 154:239–250CrossRefGoogle Scholar
  36. Skjåk-Bræk G, Grasdalen H, Smidsrød O (1989) Inhomogeneous polysaccharide ionic gels. Carbohydr Polym 10:31–54CrossRefGoogle Scholar
  37. Skulachev VP (1989) The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr 21:635–647CrossRefGoogle Scholar
  38. Trujillo-Roldán MA, Moreno S, Segura D, Galindo E, Espín G (2003) Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Appl Microbiol Biotechnol 60:733–737Google Scholar
  39. Trujillo-Roldán M, Moreno S, Espín G, Galindo E (2004) The roles of oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 63:742–747CrossRefGoogle Scholar
  40. Valla S, Li J, Ertesvåg H, Barbeyron T, Lindahl U (2001) Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. Biochimie 83:819–830CrossRefGoogle Scholar
  41. Vázquez A, Moreno S, Guzmán J, Alvarado A, Espín G (1999) Transcriptional organization of the Azotobacter vinelandii algGXLVIFA genes: characterization of algF mutants. Gene 232:217–222CrossRefGoogle Scholar
  42. Zapata-Vélez A, Trujillo-Roldán M (2010) The lack of a nitrogen source and/or the C/N ratio affects the molecular weight of alginate and its productivity in submerged cultures of Azotobacter vinelandii. Ann Microbiology 60:661–668CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Itzel Gaytán
    • 1
  • Carlos Peña
    • 1
  • Cinthia Núñez
    • 2
  • María S. Córdova
    • 1
  • Guadalupe Espín
    • 2
  • Enrique Galindo
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations