Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria

  • M. M. Santos
  • C. Piccirillo
  • P. M. L. Castro
  • N. Kalogerakis
  • M. E. Pintado
Short Communication


The aim of this work is to study the conversion of oleuropein—a polyphenol present in olives and olive oil by-products—into hydroxytyrosol, a polyphenol with antioxidant and antibacterial properties. The hydrolysis reaction is performed by lactic acid bacteria. Six bacterial strains (Lactobacillus plantarum 6907, Lactobacillus paracasei 9192, Lactobacillus casei, Bifidobacterium lactis BO, Enterococcus faecium 32, Lactobacillus LAFTI 10) were tested under aerobic and anaerobic conditions. The oleuropein degradation and hydroxytyrosol formation were monitored by HPLC. Results showed that oleuropein could be successfully converted into hydroxytyrosol. The most effective strain was Lactobacillus plantarum 6907, with a reaction yield of hydroxytyrosol of about 30 %. Different reaction mechanisms were observed for different microorganisms; a different yield was observed for Lactobacillus paracasei 9192 under aerobic or anaerobic conditions and an intermediate metabolite (oleuropein aglycone) was detected for Lactobacillus paracasei 9192 and Lactobacillus plantarum 6907 only. This study could have significant applications, as this reaction can be used to increase the value of olive oil by-products and/or to improve the taste of unripe olives.


Oleuropein Hydroxytyrosol Lactic acid bacteria β-Glucosidase Enzymatic hydrolysis Olives 



This research was funded by European Union (Insolex MRT-CT-2006-036053).

Supplementary material

11274_2012_1036_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)


  1. Aouidi F, Gannoun H, Othman NB, Ayed L, Hamdi M (2009) Improvement of fermentative decolorization of olive mill wastewater by Lactobacillus paracasei by cheese whey’s addition. Process Biochem 44:597–601CrossRefGoogle Scholar
  2. Arvanitoyannis IS, Kassaveti A (2007) Current and potential uses of composted olive oil waste. Int J Food Sci Technol 42:281–295CrossRefGoogle Scholar
  3. Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S (2009) Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int 42:453–1461CrossRefGoogle Scholar
  4. Ayed L, Hamdi M (2003) Fermentative decolorization of olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:59–65CrossRefGoogle Scholar
  5. Caldeira M, Heald SC, Carvalho MF, Vasconcelos I, Bull AT, Castro MPL (1999) 4-Chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor. Appl Microbiol Biotechnol 52:722–729CrossRefGoogle Scholar
  6. Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved Stress Tolerance of GroESL overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936CrossRefGoogle Scholar
  7. Hawksworth G, Drasar BS, Hill MJ (1971) Intestinal bacteria and the hydrolysis of glycosidic bonds. J Med Microbiol 4(4):451–459CrossRefGoogle Scholar
  8. Kachouri F, Hamdi M (2004) Enhancement of polyphenols in olive oil by contact with fermented olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:841–845CrossRefGoogle Scholar
  9. Landete JM, Curiel JA, Rodrıguez H, Rivas B, Munoz R (2008) Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem 107:320–326CrossRefGoogle Scholar
  10. Lavermicocca P, Valerio F, Lonigro SL, Angelis M, Morelli L, Callegari ML, Rizzello CG, Visconti A (2005) Study of adhesion and survival of Lactobacilli and Bifidobacteria on table olives with the aim of formulating a new probiotic food. Appl Environ Microbiol 71:84233–84240CrossRefGoogle Scholar
  11. Marsilio V, Lanza B (1998) Characterisation of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J Sci Food Agric 76:520–524CrossRefGoogle Scholar
  12. Mazzei R, Giorno L, Piacentini E, Mazzuca S, Drioli E (2009) Kinetic study of a biocatalytic membrane reactor containing immobilized-glucosidase for the hydrolysis of oleuropein. J Membr Sci 339:215–223CrossRefGoogle Scholar
  13. Obied HK, Allen MS, Bedgood DR, Prenzel PD, Robards K, Stockmann R (2005) Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem 53:823–837CrossRefGoogle Scholar
  14. Othman NB, Roblain D, Chammen N, Thonart P, Hamdi M (2009) Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem 116:3662–3669CrossRefGoogle Scholar
  15. Rivas CS, Carlos Espin J, Wichers HJ (2000) Oleuropein and related compounds. J Sci Food Agric 80:1013–1023CrossRefGoogle Scholar
  16. Rodrigues D, Sousa T, Rocha-Santos T, Silva JP, Sousa Lobo JM, Costa P, Amaral MH, Pintado MM, Gomes AM, Malcata FX, Freitas AC (2011) Influence of l-cysteine, oxygen and relative humidity upon survival thtoughout storage of probiotic bactéria in whey protein-based microcapsules. Int Diary J 21:869–876CrossRefGoogle Scholar
  17. Rodríguez H, Curiel JA, Landete JM, Rivas B, Felipe FL, Gómez-Cordovés C, Mancheño JM, Muñoz R (2009) Review food phenolics and lactic acid bacteria. Int J Food Microb 132:79–90CrossRefGoogle Scholar
  18. Ruiz-Barab JL, Jiménez-Díaz R (1994) Vitamin and amino acid requirements of Lactobacillus plantarum strains isolated from green olive fermentations. J Appl Bacteriol 76(4):350–355CrossRefGoogle Scholar
  19. Servilli M, Settanni L, Veneziani G, Esposto S, Massitti O, Taticchi A, Urbani S, Montedoro GF, Corsetti A (2006) The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv. Itrana and Leccino): a pilot-scale application. J Agric Food Chem 54:3869–3875CrossRefGoogle Scholar
  20. Sirianni R, Chimento A, De Luca A, Casaburi I, Rizza P, Onofrio A, Iacopetta D, Puoci F, Ando S, Maggiolini M, Pezzi V (2010) Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol Nutr Food Res 54(6):833–840CrossRefGoogle Scholar
  21. Tzika Ed, Papadimitriou V, Sotiroudis TG, Xenakis A (2008) Oxidation of oleuropein studied by EPR and spectrophotometry. Eur J Lipid Sci Technol 110:149–157CrossRefGoogle Scholar
  22. Visioli F, Bellomo G, Galli C (1998) Free radical-scavering properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. M. Santos
    • 1
    • 2
  • C. Piccirillo
    • 1
  • P. M. L. Castro
    • 1
  • N. Kalogerakis
    • 2
  • M. E. Pintado
    • 1
  1. 1.CBQF-Escola Superior de BiotecnologiaUniversidade Catolica PortuguesaPortoPortugal
  2. 2.Department of Environmental Engineering PolytechneioupolisTechnical University of CreteChaniaGreece

Personalised recommendations