Heterologous expression and characterization of Bacillus coagulans l-arabinose isomerase

  • Xingding Zhou
  • Jin Chuan WuEmail author
Original Paper


Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.


l-arabinose l-arabinose isomerase Bacillus coagulans l-ribulose Bioconversion 



This research was supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore (SERC grant no 0921590133). We are grateful to Dr. Keith Carpenter for critical reading of this manuscript.


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  2. Bucke C (1983) Practicality of industrial enzymes. Biochem Soc Trans 11:13–14Google Scholar
  3. Cheng L, Mu W, Zhang T, Jiang B (2010) An l-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: cloning, expression, purification, and characterization. Appl Microbiol Biotechnol 86:1089–1097CrossRefGoogle Scholar
  4. Chouayekh H, Bejar W, Rhimi M, Jelleli K, Mseddi M, Bejar S (2007) Characterization of an l-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pH. FEMS Microbiol Lett 277:260–267CrossRefGoogle Scholar
  5. De Muynck C, Beauprez J, Soetaert W, Vandamme EJ (2006a) Boric acid as a mobile phase additive for high performance liquid chromatography separation of ribose, arabinose and ribulose. J Chromatogr A 1101:115–121CrossRefGoogle Scholar
  6. De Muynck C, Pereira C, Soetaert W, Vandamme E (2006b) Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of l-ribulose. J Biotechnol 125:408–415CrossRefGoogle Scholar
  7. Dische Z, Borenfreund E (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 192:583–587Google Scholar
  8. Heath EC, Horecker BL, Smyrniotis PZ, Takagi Y (1958) Pentose fermentation by Lactobacillus plantarum. II. l-arabinose isomerase. J Biol Chem 231:1031–1037Google Scholar
  9. Helanto M, Kiviharju K, Leisola M, Nyyssola A (2007) Metabolic engineering of Lactobacillus plantarum for production of l-ribulose. Appl Environ Microbiol 73:7083–7091CrossRefGoogle Scholar
  10. Jorgensen F, Hansen OC, Stougaard P (2004) Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterisation of a thermostable l-arabinose isomerase from Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 64:816–822CrossRefGoogle Scholar
  11. Kim P (2004) Current studies on biological tagatose production using l-arabinose isomerase: a review and future perspective. Appl Microbiol Biotechnol 65:243–249Google Scholar
  12. Kim HJ, Oh DK (2005) Purification and characterization of an l-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing d-tagatose. J Biotechnol 120:162–173CrossRefGoogle Scholar
  13. Kim BC, Lee YH, Lee HS, Lee DW, Choe EA, Pyun YR (2002) Cloning, expression and characterization of l-arabinose isomerase from Thermotoga neapolitana: bioconversion of d-galactose to d-tagatose using the enzyme. FEMS Microbiol Lett 212:121–126Google Scholar
  14. Kim HJ, Kim JH, Oh HJ, Oh DK (2006) Characterization of a mutated Geobacillus stearothermophilus l-arabinose isomerase that increases the production rate of d-tagatose. J Appl Microbiol 101:213–221CrossRefGoogle Scholar
  15. Kim JH, Prabhu P, Jeya M, Tiwari MK, Moon HJ, Singh RK, Lee JK (2010) Characterization of an l-arabinose isomerase from Bacillus subtilis. Appl Microbiol Biotechnol 85:1839–1847CrossRefGoogle Scholar
  16. Kylma AK, Granstrom T, Leisola M (2004) Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for l-ribulose production. Appl Microbiol Biotechnol 63:584–591CrossRefGoogle Scholar
  17. Lee DW, Jang HJ, Choe EA, Kim BC, Lee SJ, Kim SB, Hong YH, Pyun YR (2004) Characterization of a thermostable l-arabinose (d-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol 70:1397–1404CrossRefGoogle Scholar
  18. Lee DW, Choe EA, Kim SB, Eom SH, Hong YH, Lee SJ, Lee HS, Lee DY, Pyun YR (2005a) Distinct metal dependence for catalytic and structural functions in the l-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Arch Biochem Biophys 434:333–343CrossRefGoogle Scholar
  19. Lee SJ, Lee DW, Choe EA, Hong YH, Kim SB, Kim BC, Pyun YR (2005b) Characterization of a thermoacidophilic l-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Appl Environ Microbiol 71:7888–7896CrossRefGoogle Scholar
  20. Liu SY, Wiegel J, Gherardini FC (1996) Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489. J Bacteriol 178:5938–5945Google Scholar
  21. Manjasetty BA, Chance MR (2006) Crystal structure of Escherichia coli l-arabinose isomerase (ECAI), the putative target of biological tagatose production. J Mol Biol 360:297–309CrossRefGoogle Scholar
  22. Mathe C, Gosselin G (2006) l-nucleoside enantiomers as antivirals drugs: a mini-review. Antiviral Res 71:276–281CrossRefGoogle Scholar
  23. Mizanur RM, Takata G, Izumori K (2001) Cloning and characterization of a novel gene encoding l-ribose isomerase from Acinetobacter sp. strain DL-28 in Escherichia coli. Biochim Biophys Acta 1521:141–145Google Scholar
  24. Oh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8CrossRefGoogle Scholar
  25. Ou MS, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155:379–385CrossRefGoogle Scholar
  26. Poonperm W, Takata G, Okada H, Morimoto K, Granstrom TB, Izumori K (2007) Cloning, sequencing, overexpression and characterization of l-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Appl Microbiol Biotechnol 76:1297–1307CrossRefGoogle Scholar
  27. Prabhu P, Tiwari MK, Jeya M, Gunasekaran P, Kim IW, Lee JK (2008) Cloning and characterization of a novel l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 81:283–290CrossRefGoogle Scholar
  28. Prabhu P, Jeya M, Lee JK (2010) Probing the molecular determinant for the catalytic efficiency of l-arabinose isomerase from Bacillus licheniformis. Appl Environ Microbiol 76:1653–1660CrossRefGoogle Scholar
  29. Qin J, Zhao B, Wang X, Wang L, Yu B, Ma Y, Ma C, Tang H, Sun J, Xu P (2009) Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS One 4:e4359CrossRefGoogle Scholar
  30. Rhimi M, Bejar S (2006) Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive l-arabinose isomerase from the Bacillus stearothermophilus US100 strain. Biochim Biophys Acta 1760:191–199CrossRefGoogle Scholar
  31. Rhimi M, Juy M, Aghajari N, Haser R, Bejar S (2007) Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 l-arabinose isomerase by site-directed mutagenesis. J Bacteriol 189:3556–3563CrossRefGoogle Scholar
  32. Smith KW, Johnson SL (1976) Borate inhibition of yeast alcohol dehydrogenase. Biochemistry 15:560–565CrossRefGoogle Scholar
  33. Spagnuolo M, Crecchio C, Pizzigallo MD, Ruggiero P (1999) Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration. Biotechnol Bioeng 64:685–691CrossRefGoogle Scholar
  34. Yeom SJ, Ji JH, Yoon RY, Oh DK (2008) l-Ribulose production from l-arabinose by an l-arabinose isomerase mutant from Geobacillus thermodenitrificans. Biotechnol Lett 30:1789–1793CrossRefGoogle Scholar
  35. Yeom SJ, Kim NH, Park CS, Oh DK (2009) l-ribose production from l-arabinose by using purified l-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans. Appl Environ Microbiol 75:6941–6943CrossRefGoogle Scholar
  36. Yoon SH, Kim P, Oh DK (2003) Properties of l-arabinose isomerase from Escherichia coli as biocatalyst for tagatose production. World J Microbiol Biotechnol 19:47–51CrossRefGoogle Scholar
  37. Zhang YW, Jeya M, Lee JK (2010) l-Ribulose production by an Escherichia coli harboring l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 87:1993–1999CrossRefGoogle Scholar
  38. Zhu W, Manjasetty BA, Chance MR (2007) Crystal structure of Mn2+-bound Escherichia coli l-arabinose Isomerase (ECAI) and Implications in protein catalytic mechanism and thermo-stability. J Young Investigators 17. Accessed 7 Feb 2012

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR)Jurong IslandSingapore

Personalised recommendations