Advertisement

Antibiotic susceptibility profiles and first report of TEM extended-spectrum β-lactamase in Pseudomonas fluorescens from coastal waters of the Kaštela Bay, Croatia

  • Ana MaravićEmail author
  • Mirjana Skočibušić
  • Ivica Šamanić
  • Jasna Puizina
Original Paper

Abstract

The aim of this study was to investigate the antibiotic susceptibility profiles and the presence of extended-spectrum-β-lactamases (ESBLs) in Pseudomonas fluorescens isolates from coastal waters of the Kaštela Bay, Croatia. Twenty-two water samples were collected during 2009. Isolates were tested for susceptibilities to 13 antibiotics by Etest. ESBL production was confirmed by double-disk synergy test carried out on Mueller–Hinton agar plates containing efflux pump inhibitor Phe-Arg-β-naphthylamide dihydrochloride. PCR and DNA sequencing analysis were used to identify ESBL-encoding genes. The transferability of cephalosporin resistance was tested by conjugation experiments. Genetic relatedness of ESBL-producing isolates was determined by random amplified polymorphic DNA (RAPD) analysis. Out of 185 P. fluorescens isolates recovered, 70 (37.8%) demonstrated multiresistance phenotype with highest rates of resistance to tetracycline (61.6%), aztreonam (31.9%), meropenem (17.3%), ceftazidime (15.1%) and cefotaxime (12.4%). Ten (5.4%) isolates were identified as ESBL producers. All isolates carried chromosomally located bla TEM-116 gene. RAPD analysis identified four different genotypes. Here, we demonstrated a baseline profiles of antimicrobial resistance of P. fluorescens from coastal waters of the Kaštela Bay, Croatia. To our knowledge, this is the first report of the presence of TEM-type ESBL in P. fluorescens, indicating this bacterium as a reservoir of antibiotic resistance genes with clinical relevance.

Keywords

Pseudomonas fluorescens TEM-116 ESBL Coastal waters RAPD 

Notes

Acknowledgment

This work was supported by Ministry of Science, Education and Sports, Republic of Croatia, project “Faecal indicator and potential pathogens in coastal and marine waters“, Grant 177-0000000-3182 and project “Mechanisms of maintenance genome stability in higher plants”, Grant 177-1191196-0829.

References

  1. Balsalobre LC, Dropa M, de Oliveira DE, Lincopan N, Mamizuka EM, Matté GR, Matté MH (2010) Presence of bla TEM-116 gene in environmental isolates of Aeromonas hydrophila and Aeromonas jandaei from Brazil. Braz J Microbiol 41:718–719CrossRefGoogle Scholar
  2. Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265CrossRefGoogle Scholar
  3. Bedenić B, Schmidt H, Herold S, Monaco M, Plecko V, Kalenić S, Katić S, Skrlin-Subić J (2005) Epidemic and endemic spread of Klebsiella pneumoniae producing SHV-5 beta-lactamase in Dubrava University Hospital, Zagreb, Croatia. J Chemother 17:367–375Google Scholar
  4. Clinical and Laboratory Standards Institute (CLSI) (2006) Performance standards for antimicrobial susceptibility testing, 7th edn. Document M7-A7, vol 26, no. 2. CLSI, Wayne, PA, USAGoogle Scholar
  5. David J, Lemeland MF, Boyer S (2008) Emergence of extended-spectrum β-lactamases in Pseudomonas aeruginosa: about 24 cases at Rouen University Hospital. Path Biol 56: 429– 434Google Scholar
  6. Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, André C, Fischer I, Grobost F, Brochet J-P, Lagrange I, Dutilh B, Jullin J, Noury P, Larribet G, Quentin C (2008) β-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother 62:316–323CrossRefGoogle Scholar
  7. Falagas ME, Karageorgopoulos DE (2009) Extended-spectrum β-lactamase-producing organisms. J Hosp Infect 73:345–354CrossRefGoogle Scholar
  8. Fishwick D, Paul T, Elms J, Robinson E, Crook B, Gallagher F, Lennox R, Curran A (2005) Respiratory symptoms, imunology and organism identification in contaminated metalworking fluid workers. What you see is not what you get. Occup Med 55:238–241CrossRefGoogle Scholar
  9. Gershman MD, Kennedy DJ, Noble-Wang J, Kim C, Gullion J, Kacica M, Jensen B, Pascoe N, Saiman L, McHale J, Wilkins M, Schoonmaker-Bopp D, Clayton J, Arduino M, Srinivasan A (2008) Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infec Dis 47:1372–1379CrossRefGoogle Scholar
  10. Girlich D, Poirel L, Nordmann P (2010) Novel Ambler class A carbapenem-hydrolyzing β-lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France. Antimicrob Agents Chemother 54:328–332CrossRefGoogle Scholar
  11. Girlich D, Poirel L, Nordmann P (2011) Diversity of clavulanic acid-inhibited extended-spectrum β-lactamases in Aeromonas spp. from the Seine River, Paris. France. Antimicrob Agents Chemother 55:1256–1261CrossRefGoogle Scholar
  12. Hearn EM, Dennis JJ, Gray MR, Foght JM (2003) Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185:6233–6240CrossRefGoogle Scholar
  13. Jacoby GA, Bush K (2005) β-Lactam resistance in the 21st century. In: White DG, Alekshun MN, McDermott PF (eds) Frontiers in antimicrobial resistance: a tribute to Stuart B. Levy. ASM Press, Washington, DC, p 570Google Scholar
  14. Jakšić Ž, Batel R, Bihari N, Mičić M, Zahn RK (2005) Adriatic coast as a microcosm for global genotoxic marine contamination- a long-term field study. Mar Poll Bull 50:1314–1327CrossRefGoogle Scholar
  15. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, Kim YH, Jeong BC, Lee SH (2004) Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol 42:2902–2906CrossRefGoogle Scholar
  16. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y (2006) Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 50:2990–2995CrossRefGoogle Scholar
  17. Koh TH, Wang GCY, Sng LH (2004) IMP-1 and a novel metallo- β-lactamase, VIM-6, in fluorescent pseudomonads isolated in Singapore. Antimicrob Agents Chemother 48:2334–2336CrossRefGoogle Scholar
  18. Lachmayr KL, Kerkhof LJ, Dirienzo AG, Cavanaugh CM, Ford TE (2009) Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream. Appl Environ Microbiol 75:203–211CrossRefGoogle Scholar
  19. Lahlaoui H, Dahmen S, Moussa MB, Omrane B (2011) First detection of TEM-116 extended- spectrum β-lactamase in a Providencia stuartii isolate from a Tunisian hospital. Indian J Med Microbiol 29:258–261CrossRefGoogle Scholar
  20. Literacka E, Bedenic B, Baraniak A, Fiett J, Tonkic M, Jajic-Bencic I, Gniadkowski M (2009) blaCTX-M genes in Escherichia coli strains from Croatian hospitals are located in new (blaCTX-M-3a) and widely spread (blaCTX-M-3a and blaCTX-M-15) genetic structures. Antimicrob Agents Chemother 53:1630–1635CrossRefGoogle Scholar
  21. Machado E, Coque TM, Cantón R, Sousa JC, Silva D, Ramos M, Rocha J, Ferreira H, Peixe L (2009) Leakage into Portuguese aquatic environments of extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 63:616–618CrossRefGoogle Scholar
  22. Michaux C, Fre`re J-M, Docquier JD, Vandenberghe I, Samyn B, Pierrard A, Feller G, Charlier P, Van Beeumen J, Wouters J (2008) Crystal structure of a cold-adapted class C β-lactamase. FEBS J 275:1687–1697CrossRefGoogle Scholar
  23. Pal KK, Tilak KV, Saxena AK, Dey Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223CrossRefGoogle Scholar
  24. Pappas G, Karavasilis V, Christou L, Tsianos EV (2006) Pseudomonas fluorescens infections in clinical practice. Scand J Infect Dis 38:68–70CrossRefGoogle Scholar
  25. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA, International Klebsiella Study Group (2003) Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother 47:3554–3560CrossRefGoogle Scholar
  26. Pellegrini C, Mercuri PS, Celenza G, Galleni M, Segatore B, Sacchetti E, Volpe R, Amicosante G, Perilli M (2009) Identification of bla IMP-22 in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. J Antimicrob Chemother 63:901–908CrossRefGoogle Scholar
  27. Petroni A, Corso A, Melano R, Cacace ML, Bru AM, Rossi A, Galas M (2002) Plasmidic extended-spectrum β-lactamases in Vibrio cholerae O1 El Tor in Argentina. Antimicrob Agents Chemother 46:1462–1468CrossRefGoogle Scholar
  28. Picão RC, Poirel L, Demarta A, Petrini O, Corvaglia AR, Nordmann P (2008) Expanded-spectrum β-lactamase PER-1 in an environmental Aeromonas media isolate from Switzerland. Antimicrob Agents Chemother 52:3461–3462CrossRefGoogle Scholar
  29. Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P (1999) Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 43:573–581Google Scholar
  30. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P (2000) Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 44:622–632CrossRefGoogle Scholar
  31. Pontes DS, Pinheiro FA, Lima-Bittencourt CI, Guedes RLM, Cursino L, Barbosa F, Santos FR, Chartone-Souza E, Nascimento AMA (2009) Multiple antimicrobial resistance of Gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. Microb Ecol 58:762–772CrossRefGoogle Scholar
  32. Rodríguez-Baño J, Navarro MD, Romero L, Martínez-Martínez L, Muniain MA, Perea EJ, Pérez-Cano R, Pascual A (2004) Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 42:1089–1094CrossRefGoogle Scholar
  33. Romero EDV, Padilla TP, Hernandez AH, Grande RP, Vazquez MF, Garcia IG, Garcia-Rodriguez JA, Munoz Bellido JL (2007) Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum beta-lactamases. Diagn Microbiol Infect Dis 59:433–437CrossRefGoogle Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Laboratory Press, New YorkGoogle Scholar
  35. Sevillano E, Valderrey C, Canduela MJ, Umaran A, Calvo F, Gallego L (2006) Resistance to antibiotics in clinical isolates of Pseudomonas aeruginosa. Pathol Biol 54:493–497CrossRefGoogle Scholar
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  37. Tonkić M, Mohar B, Šiško-Kraljević K, Meško-Meglič K, Goić-Barišić I, Novak A, Kovačić A, Punda-Polić V (2010) High prevalence and molecular characterization of extended-spectrum β-lactamase-producing Proteus mirabilis strains in southern Croatia. J Med Microbiol 59:1185–1190CrossRefGoogle Scholar
  38. Vignoli R, Varela G, Mota MI, Cordeiro NF, Power P, Ingold E, Gadea P, Sirok A, Schelotto F, Ayala JA, Gutkind G (2005) Enteropathogenic Escherichia coli strains carrying genes encoding the PER-2 and TEM-116 extended-spectrum β-lactamases isolated from children with diarrhea in Uruguay. J Clin Microbiol 43:2940–2943CrossRefGoogle Scholar
  39. Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594CrossRefGoogle Scholar
  40. Zhang XX, Zhang T, Fang HH (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ana Maravić
    • 1
    Email author
  • Mirjana Skočibušić
    • 1
  • Ivica Šamanić
    • 1
  • Jasna Puizina
    • 1
  1. 1.Department of Biology, Faculty of ScienceUniversity of SplitSplitCroatia

Personalised recommendations