Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71

  • Sabriye Canakcı
  • Zeliha Cevher
  • Kadriye Inan
  • Muslum Tokgoz
  • Fatmagul Bahar
  • Murat Kacagan
  • Fulya Ay Sal
  • Ali Osman Belduz
Original Paper

Abstract

The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.

Keywords

Endo acting Endoxylanase Geobacillus sp. Thermostable 

Supplementary material

11274_2011_1000_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Bansod SM, Rele MV (1998) Alkaline xylanase from an alkalotolerant Cephalosporium sp.: characteristics. J Biochem Mol Biol Biophys 2:121–128Google Scholar
  2. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications. Appl Microbiol Biotechnol 56:326–338CrossRefGoogle Scholar
  3. Biely P (1985) Microbial xylonolytic systems. Trends Biotechnol 3:286–290CrossRefGoogle Scholar
  4. Canakci S, Inan K, Kacagan M, Belduz AO (2007) Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey. J Microbiol Biotechnol 17:1262–1270Google Scholar
  5. Cardoso OAV, Filho EXF (2003) Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiol Lett 223:309–314CrossRefGoogle Scholar
  6. Chandra RK, Chandra TS (1996) Purification and characterization of xylanase from alkali-tolerant Asperigillus fischeri Fxnl. FEMS Microbiol Lett 145:457–461CrossRefGoogle Scholar
  7. Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Macris BJ, Stamatis H, Skaltsa H (2003) Antimicrobial activity of acidic xylooligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171–175CrossRefGoogle Scholar
  8. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefGoogle Scholar
  9. Coughlan MP, Hazlewood G (1993) β-1,4-d-Xylan-degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289Google Scholar
  10. Dhillon A, Gupta JK, Jauhari BM, Khanna S (2000) A cellulase-poor, thermostable, alkali-tolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Biores Technol 73:273–277CrossRefGoogle Scholar
  11. Fujimoto Z, Kuno A, Kaneko S, Yoshida S, Kobayashi H, Kusakabe I, Mizuno H (2000) Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain. J Mol Biol 300:575–585CrossRefGoogle Scholar
  12. Gessesse A (1998) Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl Environ Microbiol 64:3533–3535Google Scholar
  13. Grupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of craft pulp. J Appl Microbiol 88:325–334CrossRefGoogle Scholar
  14. Irwin D, Jung ED, Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–770Google Scholar
  15. Khandeparkar R, Bhosle NB (2006) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol 157:315–325CrossRefGoogle Scholar
  16. Khasin A, Alchanati I, Shoam Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730Google Scholar
  17. Li N, Yang PL, Wang YR, Luo HY, Meng K, Wu NF, Fan YL, Yao B (2008) Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradie var. K11. J Microbiol Biotechnol 18:410–416Google Scholar
  18. Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb Technol 39:1492–1498CrossRefGoogle Scholar
  19. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229CrossRefGoogle Scholar
  20. Mareau A, Roberge M, Manin C, Shareck F, Kluepfel D, Morosoli R (1994) Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans. Biochem J 302:291–295Google Scholar
  21. Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  22. Olama ZA (1998) Purification and characterization of cellulase free xylanase from Streptomyces coriofaciens. Adv Food Sci 20:69–78Google Scholar
  23. Qureshy AF, Khan LA, Khanna S (2000) Expression of Bacillus circulans Teri-42 xylanase gene in Bacillus subtilis. Enzyme Microb Technol 27:227–233CrossRefGoogle Scholar
  24. Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl Environ Microbiol 65:694–697Google Scholar
  25. Reeves RA, Gibbs MD, Morris DD, Griffiths KR, Saul DJ, Bergquist PL (2000) Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1. Appl Environ Microbiol 66:1532–1537CrossRefGoogle Scholar
  26. Shrinivas D, Savitha G, Raviranjan K, Naik GR (2010) A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: Purification and characterization. Appl Biochem Biotechnol 162:2049–2057CrossRefGoogle Scholar
  27. Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1–7CrossRefGoogle Scholar
  28. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64CrossRefGoogle Scholar
  29. Tull D, Withers SG, Gilkes NR, Kilburn DG, Warren RAJ, Aebersold R (1991) Glutamic acid 274 is the nucleophile in the active site of a exoglucanase from Cellulomonas fimi. J Biol Chem 266:15621–15625Google Scholar
  30. Viikari L, Kantelineo A, Bundquist J, Linko M (1994) Xylanase in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350CrossRefGoogle Scholar
  31. Wong KY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317Google Scholar
  32. Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pasific. Appl Microbiol Biotechnol 72:1210–1216CrossRefGoogle Scholar
  33. Zhang GM, Hu Y, Zhuang YH, Ma LX, Zhang XE (2006) Molecular cloning and heterologous expression of an alkaline xylanase from Bacillus pumilus HBP8 in Pichia pastoris. Biocatal Biotransform 24:371–379CrossRefGoogle Scholar
  34. Zhang GM, Huang J, Huang GR, Ma LX, Zhang XE (2007) Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumeria. Appl Microbiol Biotechnol 74:339–346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sabriye Canakcı
    • 1
  • Zeliha Cevher
    • 1
  • Kadriye Inan
    • 1
  • Muslum Tokgoz
    • 1
  • Fatmagul Bahar
    • 1
  • Murat Kacagan
    • 1
  • Fulya Ay Sal
    • 1
  • Ali Osman Belduz
    • 1
  1. 1.Department of Biology, Faculty of SciencesKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations