Human lactoferrin increases Helicobacter pylori internalisation into AGS cells

  • Dorien S. Coray
  • Jack A. HeinemannEmail author
  • Peter C. Tyrer
  • Jacqueline I. Keenan
Original Paper


Helicobacter pylori has high global infection rates and can cause other undesirable clinical manifestations such as duodenal ulcer (DU) and gastric cancer (GC). Frequencies of re-infection after therapeutic clearance and rates of DU versus GC vary geographically and differ markedly between developed and developing countries, which suggests additional factors may be involved. The possibility that, in vivo, lactoferrin (Lf) may play a subtle role in modulating micronutrient availability or bacterial internalisation with implications for disease etiology is considered. Lf is an iron binding protein produced in mammals that has antimicrobial and immunomodulatory properties. Some bacteria that regularly colonise mammalian hosts have adapted to living in high Lf environments and we investigated if this included the gastric pathogen H. pylori. We found that H. pylori was able to use iron from fully iron-saturated human Lf (hLf) whereas partially iron-saturated hLf (apo) did not increase H. pylori growth. Instead, apo-hLf increased adherence to and internalisation of bacteria into cultured epithelial cells. By increasing internalisation, we speculate that apo-human lactoferrin may contribute to H. pylori’s ability to persistence in the human stomach, an observation that potentially has implications for the risk of H. pylori-associated disease.


Lactoferrin Helicobacter pylori Adhesion Invasion Bacterial internalisation 



DSC supported by Fulbright NZ and GenØk—Centre for Biosafety. This work was presented in part at the New Zealand Microbiology Society Conference 2008, Christchurch NZ and Hazard Identification and Risk Assessment of Transgene Flow 2009, Tromsø, Norway.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

3-D animation of cells depicted in Fig. 6b, showing attachment and uptake of H. pylori to AGS cells. Nuclei - blue, H. pylori - green, actin - red. ×40 objective.(MP4 395 kb)


  1. Ajello M, Greco R, Giansanti F, Massucci MT, Antonini G, Valenti P (2002) Anti-invasive activity of bovine lactoferrin towards group A streptococci. Biochem Cell Biol 80(1):119–124CrossRefGoogle Scholar
  2. Amieva MR, Salama NR, Tompkins LS, Falkow S (2002) Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol 4(10):677–690CrossRefGoogle Scholar
  3. Bardhan PK (1997) Epidemiological features of Helicobacter pylori infection in developing countries. Clin Infect Dis 25(5):973–978CrossRefGoogle Scholar
  4. Bland MV, Ismail S, Heinemann JA, Keenan JI (2004) The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother 48(6):1983–1988CrossRefGoogle Scholar
  5. Blaser MJ (1998) Helicobacter pylori and gastric diseases. Bmj 316(7143):1507–1510CrossRefGoogle Scholar
  6. Chan WY, Hui PK, Leung KM, Thomas TM (1992) Modes of Helicobacter colonization and gastric epithelial damage. Histopathology 21(6):521–528CrossRefGoogle Scholar
  7. Cover TL, Dooley CP, Blaser MJ (1990) Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect Immun 58(3):603–610Google Scholar
  8. Dhaenens L, Szczebara F, Husson MO (1997) Identification, characterization, and immunogenicity of the lactoferrin- binding protein from Helicobacter pylori. Infect Immun 65(2):514–518Google Scholar
  9. Di Biase AM, Tinari A, Pietrantoni A, Antonini G, Valenti P, Conte MP, Superti F (2004) Effect of bovine lactoferricin on enteropathogenic Yersinia adhesion and invasion in HEp-2 cells. J Med Microbiol 53(Pt 5):407–412CrossRefGoogle Scholar
  10. Dial EJ, Hall LR, Serna H, Romero JJ, Fox JG, Lichtenberger LM (1998) Antibiotic properties of bovine lactoferrin on Helicobacter pylori. Dig Dis Sci 43(12):2750–2756CrossRefGoogle Scholar
  11. Dubois A, Boren T (2007) Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell Microbiol 9(5):1108–1116CrossRefGoogle Scholar
  12. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez–Perez GI, Yamaoka Y, Megraud F, Otto K, Reichard U, Katzowitsch E, Wang X, Achtman M, Suerbaum S (2003) Traces of human migrations in Helicobacter pylori populations. Science 299(5612):1582–1585CrossRefGoogle Scholar
  13. Ferguson GC, Heinemann JA, Kennedy MA (2002) Gene transfer between Salmonella enterica serovar Typhimurium inside epithelial cells. J Bacteriol 184(8):2235–2242CrossRefGoogle Scholar
  14. Frenck RW Jr, Clemens J (2003) Helicobacter in the developing world. Microbes Infect 5(8):705–713CrossRefGoogle Scholar
  15. Heinemann JA (1999) How antibiotics cause antibiotic resistance. Drug Discov Today 4(2):72–79CrossRefGoogle Scholar
  16. Heinemann JA (2008) Human lactoferrin biopharming in New Zealand. Research report 15.
  17. Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd (2003) Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol 47(3):607–617CrossRefGoogle Scholar
  18. Husson MO, Legrand D, Spik G, Leclerc H (1993) Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect Immun 61(6):2694–2697Google Scholar
  19. Huynh HQ, Campbell MA, Couper RT, Tran CD, Lawrence A, Butler RN (2009) Lactoferrin and desferrioxamine are ineffective in the treatment of Helicobacter pylori infection and may enhance H. pylori growth and gastric inflammation in mice. Lett Appl Microbiol 48(5):517–522CrossRefGoogle Scholar
  20. Isberg RR, Barnes P (2001) Subversion of integrins by enteropathogenic Yersinia. J Cell Sci 114(Pt 1):21–28Google Scholar
  21. Keenan JI, Davis KA, Beaugie CR, McGovern JJ, Moran AP (2008) Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions. Innate Immun 14(5):279–290CrossRefGoogle Scholar
  22. Khalifa MM, Sharaf RR, Aziz RK (2010) Helicobacter pylori: a poor man’s gut pathogen? Gut Pathog 2(1):2CrossRefGoogle Scholar
  23. Khin MM, Ringner M, Aleljung P, Wadstrom T, Ho B (1996) Binding of human plasminogen and lactoferrin by Helicobacter pylori coccoid forms. J Med Microbiol 45(6):433–439CrossRefGoogle Scholar
  24. Leon-Barua R, Berendson-Seminario R, Recavarren-Arce S, Gilman RH (1997) Geographic factors probably modulating alternative pathways in Helicobacter pylori-associated gastroduodenal pathology: a hypothesis. Clin Infect Dis 25(5):1013–1016CrossRefGoogle Scholar
  25. Leunk RD, Johnson PT, David BC, Kraft WG, Morgan DR (1988) Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol 26(2):93–99CrossRefGoogle Scholar
  26. Ling JM, Schryvers AB (2006) Perspectives on interactions between lactoferrin and bacteria. Biochem Cell Biol 84(3):275–281CrossRefGoogle Scholar
  27. Longhi C, Conte MP, Seganti L, Polidoro M, Alfsen A, Valenti P (1993) Influence of lactoferrin on the entry process of Escherichia coli HB101 (pRI203) in HeLa cells. Med Microbiol Immunol 182(1):25–35CrossRefGoogle Scholar
  28. Longhi C, Conte MP, Penta M, Cossu A, Antonini G, Superti F, Seganti L (2004) Lactoferricin influences early events of Listeria monocytogenes infection in THP-1 human macrophages. J Med Microbiol 53(Pt 2):87–91CrossRefGoogle Scholar
  29. Lozniewski A, Haristoy X, Rasko DA, Hatier R, Plenat F, Taylor DE, Angioi-Duprez K (2003) Influence of Lewis antigen expression by Helicobacter pylori on bacterial internalization by gastric epithelial cells. Infect Immun 71(5):2902–2906CrossRefGoogle Scholar
  30. McAbee DD, Ling YY (1997) Iron-loading of cultured adult rat hepatocytes reversibly enhances lactoferrin binding and endocytosis. J Cell Physiol 171(1):75–86CrossRefGoogle Scholar
  31. Miehlke S, Reddy R, Osato MS, Ward PP, Conneely OM, Graham DY (1996) Direct activity of recombinant human lactoferrin against Helicobacter pylori. J Clin Microbiol 34(10):2593–2594Google Scholar
  32. Mikogami T, Marianne T, Spik G (1995) Effect of intracellular iron depletion by picolinic acid on expression of the lactoferrin receptor in the human colon carcinoma cell subclone HT29–18-C1. Biochem J 308(Pt 2):391–397Google Scholar
  33. Necchi V, Candusso ME, Tava F, Luinetti O, Ventura U, Fiocca R, Ricci V, Solcia E (2007) Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 132(3):1009–1023CrossRefGoogle Scholar
  34. Ogata T (1997) Duodenal and gastric cell regenerating epithelia on margins of human duodenal ulcer and presence of H. pylori–an electron microscopic study. Histol Histopathol 12(1):57–68Google Scholar
  35. Olakanmi O, Rasmussen GT, Lewis TS, Stokes JB, Kemp JD, Britigan BE (2002) Multivalent metal-induced iron acquisition from transferrin and lactoferrin by myeloid cells. J Immunol 169(4):2076–2084Google Scholar
  36. Opekun AR, El-Zaimaity HM, Osato MS, Gilger MA, Malaty HM, Terry M, Headon DR, Graham DY (1999) Novel therapies for Helicobacter pylori infection. Aliment Pharmacol Ther 13(1):35–42CrossRefGoogle Scholar
  37. Patel D, Almeida RA, Dunlap JR, Oliver SP (2009) Bovine lactoferring serves as a molecular bridge for internalization of Streptococcus uberis into bovine mammary epithelial cells. Vet Microbiol 137:297–301CrossRefGoogle Scholar
  38. Petersen AM, Krogfelt KA (2003) Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol 36(3):117–126CrossRefGoogle Scholar
  39. Petersen AM, Blom J, Andersen LP, Krogfelt KA (2000) Role of strain type, AGS cells and fetal calf serum in Helicobacter pylori adhesion and invasion assays. FEMS Immunol Med Microbiol 29(1):59–67CrossRefGoogle Scholar
  40. Ramirez-Ramos A, Gilman RH, Leon-Barua R, Recavarren-Arce S, Watanabe J, Salazar G, Checkley W, McDonald J, Valdez Y, Cordero L, Carrazco J (1997) Rapid recurrence of Helicobacter pylori infection in Peruvian patients after successful eradication. Gastrointestinal physiology working group of the Universidad Peruana Cayetano Heredia and The Johns Hopkins University. Clin Infect Dis 25(5):1027–1031CrossRefGoogle Scholar
  41. Senkovich O, Ceaser S, McGee DJ, Testerman TL (2010) Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media. Infect Immun 78(5):1841–1849CrossRefGoogle Scholar
  42. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417(6888):552–555CrossRefGoogle Scholar
  43. Superti F, Pietrantoni A, Di Biase AM, Longhi C, Valenti P, Tinari A (2005) Inv-mediated apoptosis of epithelial cells infected with enteropathogenic Yersinia: a protective effect of lactoferrin. Res Microbiol 156(5–6):728–737CrossRefGoogle Scholar
  44. Tummuru MK, Cover TL, Blaser MJ (1993) Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect Immun 61(5):1799–1809Google Scholar
  45. Valenti P, Antonini G (2005) Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci 62(22):2576–2587CrossRefGoogle Scholar
  46. Valenti P, Greco R, Pitari G, Rossi P, Ajello M, Melino G, Antonini G (1999) Apoptosis of Caco-2 intestinal cells invaded by Listeria monocytogenes: protective effect of lactoferrin. Exp Cell Res 250(1):197–202CrossRefGoogle Scholar
  47. van Vliet AH, Stoof J, Vlasblom R, Wainwright SA, Hughes NJ, Kelly DJ, Bereswill S, Bijlsma JJ, Hoogenboezem T, Vandenbroucke-Grauls CM, Kist M, Kuipers EJ, Kusters JG (2002) The role of the ferric uptake regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter 7(4):237–244CrossRefGoogle Scholar
  48. Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37(2):274–286CrossRefGoogle Scholar
  49. Ward PP, Paz E, Conneely OM (2005) Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci 62(22):2540–2548CrossRefGoogle Scholar
  50. Wen S, Felley CP, Bouzourene H, Reimers M, Michetti P, Pan-Hammarstrom Q (2004) Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans. J Immunol 172(4):2595–2606Google Scholar
  51. Wilkinson SM, Uhl JR, Kline BC, Cockerill FR 3rd (1998) Assessment of invasion frequencies of cultured HEp-2 cells by clinical isolates of Helicobacter pylori using an acridine orange assay. J Clin Pathol 51(2):127–133CrossRefGoogle Scholar
  52. Willer Eda M, Lima Rde L, Giugliano LG (2004) In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins. BMC Microbiol 4:18CrossRefGoogle Scholar
  53. Zullo A, De Francesco V, Scaccianoce G, Manes G, Efrati C, Hassan C, Maconi G, Piglionica D, Cannaviello C, Panella C, Morini S, Ierardi E (2007) Helicobacter pylori eradication with either quadruple regimen with lactoferrin or levofloxacin-based triple therapy: a multicentre study. Dig Liver Dis 39(9):806–810CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dorien S. Coray
    • 1
  • Jack A. Heinemann
    • 1
    • 2
    Email author
  • Peter C. Tyrer
    • 3
  • Jacqueline I. Keenan
    • 3
  1. 1.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.GenØk–Centre for BiosafetyTromsøNorway
  3. 3.Department of SurgeryUniversity of Otago ChristchurchChristchurchNew Zealand

Personalised recommendations