World Journal of Microbiology and Biotechnology

, Volume 28, Issue 4, pp 1327–1350 | Cite as

Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture

  • P. N. Bhattacharyya
  • D. K. JhaEmail author


Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.


ACC- deaminase Colonization ability Plant-microbe symbiosis Quorum sensing signal interference Rhizosphere bacteria Rhizosphere engineering 



N-acyl homoserine lactones




Anti-fungal metabolite


2, 4-diacetylphloroglucinol


Bean yellow mosaic potyvirus


Central insecticide board


Induced systemic resistance




Phenylalanine ammonia-lyase


Plant growth-promoting rhizobacteria


Polychlorinated biphenyls


Polyphenol oxidase


Quorum sensing


Restriction fragment length polymorphism


Root zone temperature


Volatile organic compounds


Yeast cadmium factor protein



The authors are thankful to the Department of Science and Technology (DST), Govt. of India, New Delhi for financial assistance in the form of a research project.


  1. Ahanthem S, Jha DK (2007) Response of rice crop inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria to different soil nitrogen concentrations. Mycorrhiza News 18(4):15–20Google Scholar
  2. Ahanthem S, Jha DK (2008) Interactions between Acaulospora and Azospirillum and their synergistic effect on rice growth at different sources and regimes of soil phosphorus. Mycorrhiza News 20(2):6–12Google Scholar
  3. Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34Google Scholar
  4. Ali K, Hj SZ (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9(25):3689–3698Google Scholar
  5. Alstroem S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37(6):495–501CrossRefGoogle Scholar
  6. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47(4):996–1006Google Scholar
  7. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180. doi: 10.1146/annurev.phyto.38.1.145 CrossRefGoogle Scholar
  8. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67. doi: 10.1023/A:1004326910584
  9. Ardakani SS, Heydari A, Tayebi L, Mohammedi M (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6(2):95–100CrossRefGoogle Scholar
  10. Aroca R, Ruiz-Lozano JM (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms-a review. In: Lichtouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms, sustainable agriculture reviews. Springer, The Netherlands 2:121–135Google Scholar
  11. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677Google Scholar
  12. Babalola OO, Osir EO, Sanni AI, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2(6):157–160Google Scholar
  13. Backman PA, Wilson M, Murphy JF (1997) Bacteria for biological control of plant diseases. In: Rechcigl NA, Rechcigl JE (eds) Environmentally safe approaches to crop disease control. Lewis Publishers, Boca Raton, FL, pp 95–109Google Scholar
  14. Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97(2):239–243CrossRefGoogle Scholar
  15. Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazatrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  16. Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25(10):2397–2406. doi: 10.1023/A:1020890311499 CrossRefGoogle Scholar
  17. Barea JM, Pozo MJ, Azcon R, Aguilar CA (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778CrossRefGoogle Scholar
  18. Baset Mia MA, Shamsuddin ZH, Wahab Z, Marziah M (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured musa plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4(2):85–90Google Scholar
  19. Bashan Y, de-Bashan LE (2010) Chapter two—How the plant growth-promoting bacterium Azospirillum promotes plant growth–a critical assessment. Adv Agron 108:77–136CrossRefGoogle Scholar
  20. Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, BocaRaton, FL, pp 331–345Google Scholar
  21. Bashan Y, Puente ME, de-Bashan LE, Hernandez JP (2008) Environmental uses of plant growth-promoting bacteria. In: Barka EA, Clement C (eds) Plant-microbe interactions. Trivandrum, Kerala, India, pp 69–93Google Scholar
  22. Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 1–56. doi:  10.1007/978-1-4020-4538-7_1
  23. Belimov AA et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652CrossRefGoogle Scholar
  24. Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11(5):557–574CrossRefGoogle Scholar
  25. Bevivino A et al (1998) Characterization of a free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27(3):225–237. doi: 10.1111/j.15746941.1998.tb00539.x CrossRefGoogle Scholar
  26. Bharathi S (2004) Development of botanical formulations for the management of major fungal diseases of tomato and onion. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India, p 152Google Scholar
  27. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350CrossRefGoogle Scholar
  28. Boddey RM, Baldani VLD, Baldani JI, Dobereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95(1):109–121. doi:  10.1007/BF02378857 Google Scholar
  29. Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895Google Scholar
  30. Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880. doi: 10.1007/s00253-006-0731-9 CrossRefGoogle Scholar
  31. Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545CrossRefGoogle Scholar
  32. Cakmakci R, Donmez F, Aydin A, Sahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38(6):1482–1487CrossRefGoogle Scholar
  33. Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004) Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J Microbiol Biotechnol 20:501–504CrossRefGoogle Scholar
  34. Cardoso EJBN, Freitas SS (1992) A rizosfera. In: Cardoso EJBN, Tsai SM, Neves PCP (eds) Microbiologia do solo. Sociedade Brasileira de Ciencia do Solo, Campinas, pp 41–57Google Scholar
  35. Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21CrossRefGoogle Scholar
  36. Castro RO, Cantero EV, Bucio JL (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3(4):263–265CrossRefGoogle Scholar
  37. Castro RO, Cornejo HAC, Rodriguez LM, Bucio JL (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712CrossRefGoogle Scholar
  38. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680CrossRefGoogle Scholar
  39. Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618CrossRefGoogle Scholar
  40. Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283CrossRefGoogle Scholar
  41. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38(4):392–397. doi:  10.1099/00207713-38-4-392
  42. Chen X, Schauder S, Potier N et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549CrossRefGoogle Scholar
  43. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918CrossRefGoogle Scholar
  44. Chet I, Chernin L (2002) Biocontrol, microbial agents in soil. In: Bitton G (ed) Encyclopedia of environmental microbiology. Willey, New York, USA, pp 450–465Google Scholar
  45. Chew K (2002) Georgics. Hackett Publishing Company, Indianapolis, USA, p 152Google Scholar
  46. Chin-A-Woeng TF, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14(8):1006–1015Google Scholar
  47. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513CrossRefGoogle Scholar
  48. Compant S, Duffy B, Jerzy N, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of Action, and future prospects. Appl Environ Microbiol 71(9):4951–4959CrossRefGoogle Scholar
  49. Cook RJ (2002) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116CrossRefGoogle Scholar
  50. Damayanti TA, Pardede H, Mubarik NR (2007) Utilization of root-colonizing bacteria to protect hot-pepper against Tobacco Mosaic Tobamovirus. Hayati J Biosci 14(3):105–109Google Scholar
  51. De La Fuente L, Landa BB, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96:751–762. doi: 10.1094/PHYTO-96-0751 CrossRefGoogle Scholar
  52. de Lajudie P, Laurent-Fulele E, Willems A et al (1998a) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290CrossRefGoogle Scholar
  53. de Lajudie P, Willems A, Nick G, Moreira F et al (1998b) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382. doi: 10.1099/00207713-48-2-369 Google Scholar
  54. de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54:807–816. doi: 10.1007/s10526-009-9226-9 CrossRefGoogle Scholar
  55. de Vasconcellos RLF, da Silva MCP, Ribeiro CM, Cardoso EJBN (2010) Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci Agric 67:743–746CrossRefGoogle Scholar
  56. Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445 Basic Biotechnol 3:1–5Google Scholar
  57. Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR-Arabidopsis interactions is a useful system to study signalling pathways involved in plant developmental control. Plant Signal Behav 4:321–323CrossRefGoogle Scholar
  58. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394CrossRefGoogle Scholar
  59. Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299CrossRefGoogle Scholar
  60. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879Google Scholar
  61. Dobereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29(5):771–774CrossRefGoogle Scholar
  62. Dong Z, McCully ME, Canny MJ (1997) Does Acetobacter diazotrophicus live and move in the xylem of sugarcane stems? Anatomical and physiological data. Ann Bot 80:147–158CrossRefGoogle Scholar
  63. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  64. Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436. doi: 10.1007/s00248-008-9407-6 CrossRefGoogle Scholar
  65. Dubey SK (1996) Combined effect of Bradyrhizobium japonicum and phosphate-solubilizing Pseudomonas striata on nodulation, yield attributes and yield of rainfed soybean (Glycine max) under different sources of phosphorus in Vertisols. Ind J Microbiol 33:61–65Google Scholar
  66. Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113(6):247–251Google Scholar
  67. Elliot LF, Lynch JM (1984) Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.) Soil Biol Biochem 16:69–71. doi: 10.1016/0038-0717(84)90128-7
  68. Elliot LF, Lynch JM (1995) The international workshop on establishment of microbial inocula in soils: cooperative research project on biological resource management of the organization for economic cooperation and development (OECD). Am J Alt Agric 10:50–73CrossRefGoogle Scholar
  69. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agent of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520CrossRefGoogle Scholar
  70. Erturk Y, Ercisli S, Haznedar A, Cakmakci R (2010) Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43:91–98CrossRefGoogle Scholar
  71. Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agric Res 54(4):377–380Google Scholar
  72. Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hort 110:324–327CrossRefGoogle Scholar
  73. Estrada de los Santos P, Bustillos-Cristales MR, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microb 67:2790–2798CrossRefGoogle Scholar
  74. Farmer EE (2001) Surface-to-air signals. Nature 411:854–856CrossRefGoogle Scholar
  75. Farwell AJ et al (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545CrossRefGoogle Scholar
  76. Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  77. Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235CrossRefGoogle Scholar
  78. Forlani GM, Mantelli M, Nielsen E (1999) Biochemical evidence for multiple acetoin-forming enzymes in cultured plant cells. Phytochemistry 50:255–262CrossRefGoogle Scholar
  79. Franco-Correa M, Quintana A, Duque C et al (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217CrossRefGoogle Scholar
  80. Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A et al (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Micr 51:1305–1314Google Scholar
  81. Garcia de Salamone IE, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256. doi: 10.1007/BF00335952 CrossRefGoogle Scholar
  82. Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  83. Ghorbanpour MNM, Hosseini S, Rezazadeh M, Omidi KK, Etminan A (2010) Hyoscyamine and scopolamine production of black henbane (Hyoscyamus niger) infected with Pseudomonas putida and P. fluorescens strains under water deficit stress. Planta Med 76(12):167CrossRefGoogle Scholar
  84. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281. doi: 10.1016/S0981-9428(03)00019-6 CrossRefGoogle Scholar
  85. Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, p 234Google Scholar
  86. Glass ADM, Britto DT, Kaiser BN et al (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864CrossRefGoogle Scholar
  87. Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  88. Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, LondonCrossRefGoogle Scholar
  89. Gomes RC, Semedo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett Appl Microbiol 30:146–150CrossRefGoogle Scholar
  90. Gouws LM (2009) The molecular analysis of the effects of lumichrome as a plant growth promoting substance. Dissertation, University of Stellenbosch, South AfricaGoogle Scholar
  91. Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57(4):312–317CrossRefGoogle Scholar
  92. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  93. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Bioch 39:11–17CrossRefGoogle Scholar
  94. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: Effects of substrate loading rates. Soil Biol Biochem 31:145–153. doi: 10.1016/S0038-0717(98)00117-5 CrossRefGoogle Scholar
  95. Guerinot ML, Chelm BK (1984) Isolation and expression of the Bradyrhizobium japonicum adenylate cyclase gene (cya) in Escherichia coli. J Bacteriol 159:1068–1071Google Scholar
  96. Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertl Soils 35:399–405. doi: 10.1007/s00374-002-0486-0 CrossRefGoogle Scholar
  97. Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211CrossRefGoogle Scholar
  98. Gyaneshwar P et al (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229CrossRefGoogle Scholar
  99. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefGoogle Scholar
  100. Halder AK, Mishra AK, Chakarbartty PK (1991) Solubilization of inorganic phosphates by Bradyrhizobium. Ind J Exp Biol 29:28–31Google Scholar
  101. Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242CrossRefGoogle Scholar
  102. Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28(1):66–76CrossRefGoogle Scholar
  103. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. doi: 10.1007/s13213-010-0117-1 CrossRefGoogle Scholar
  104. Hellriegel H, Wilfarth H (1888) Untersuchungen uber die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins fur Rubenzucker-Industrie Deutschen Reichs, p 234Google Scholar
  105. Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27:996–1002. doi: 10.1016/j.cropro.2007.12.004 CrossRefGoogle Scholar
  106. Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50(2):277–288CrossRefGoogle Scholar
  107. Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78Google Scholar
  108. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173–195CrossRefGoogle Scholar
  109. Holden MTG et al (1999) Quorum-sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266CrossRefGoogle Scholar
  110. Holguin G, Glick BR (2001) Expression of the ACC Deaminase Gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41(3):281–288Google Scholar
  111. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wikins co, Baltimore, USA, p 566Google Scholar
  112. Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242CrossRefGoogle Scholar
  113. Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microbiol 54:248–258CrossRefGoogle Scholar
  114. Isopi R, Fabbri P, Del-Gallo M, Puppi G (1995) Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18:43–55Google Scholar
  115. Jaleel CA et al (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces 60:7–11CrossRefGoogle Scholar
  116. Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2009) Traditional and non-traditional plant growth regulators alter phytochemical constituents in Catharanthus roseus. Process Biochem 44:205–209. doi: 10.1016/j.procbio.2008.10.012 CrossRefGoogle Scholar
  117. James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797CrossRefGoogle Scholar
  118. James EK, Olivares FL, de Oliveira ALM, dos Reis FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760Google Scholar
  119. James EK, Gyaneshwar P, Mathan N et al. (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67 Mol Plant Microbe Interact 15:894–906Google Scholar
  120. Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8(3):192–207CrossRefGoogle Scholar
  121. Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515Google Scholar
  122. Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Environ Sci 1(6):1135–1143Google Scholar
  123. Kalita RB, Bhattacharyya PN, Jha DK (2009) Effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on Fusarium oxysporum causing brinjal wilt. JAPS 4:29–35Google Scholar
  124. Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887. doi: 10.1139/m85-165 Google Scholar
  125. Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hort 114(1):16–20CrossRefGoogle Scholar
  126. Kaushik R, Saxena AK, Tilak KVBR (2000) Selection of Tn5:lacZ mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature. World J Microbiol Biotechnol 16:567–570. doi: 10.1023/A:1008901331991 CrossRefGoogle Scholar
  127. Kaymak HC (2011) Potential of PGPR in Agricultural Innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiol monographs. Springer, Berlin 18:45–79Google Scholar
  128. Kempster VN, Scott ES, Davies KA (2002) Evidence for systemic, cross-resistance in white clover (Trifolium repens) and annual medic (Medicago truncatula var truncatula) induced by biological and chemical agents. Biocontrol Sci Technol 12(5):615–623. doi: 10.1080/0958315021000016270 CrossRefGoogle Scholar
  129. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480CrossRefGoogle Scholar
  130. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  131. Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2, 4 diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81(2):395–414. doi: 10.1111/j.1365-2958.2011.07697.x CrossRefGoogle Scholar
  132. Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24 Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1:72–93Google Scholar
  133. Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87. doi: 10.1007/s003740050347 CrossRefGoogle Scholar
  134. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, pp 879–882Google Scholar
  135. Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024CrossRefGoogle Scholar
  136. Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden RD, Waughn JL (eds) Pest management: biologically based technologies. American Chemical Society Books, Washington, DC, pp 156–165Google Scholar
  137. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266CrossRefGoogle Scholar
  138. Kloepper JW, Gutierrez-Estrada A, Mclnroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53(2):159–167CrossRefGoogle Scholar
  139. Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266CrossRefGoogle Scholar
  140. Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305. doi: 10.1007/s003740050497 CrossRefGoogle Scholar
  141. Kumar A, Salini P, Shrivastava JN (2009) Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Ind J Exp Biol 47:57–62Google Scholar
  142. Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM (2006) Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp., in two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 55:351–368CrossRefGoogle Scholar
  143. Lewis JA (1991) Formulation and delivery system of biocontrol agents with emphasis on fungi Beltsville symposia in agricultural research. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth 14:279–287Google Scholar
  144. Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514CrossRefGoogle Scholar
  145. Lindstrom K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367CrossRefGoogle Scholar
  146. Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698CrossRefGoogle Scholar
  147. Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Manero FJ (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176CrossRefGoogle Scholar
  148. Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefGoogle Scholar
  149. Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefGoogle Scholar
  150. Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Leeuwenhoek 81:373–383CrossRefGoogle Scholar
  151. Ma W, Zalec K, Glick BR (2001) Biological activity and colonization pattern of the bioluminescence-labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol Ecol 35:137–144Google Scholar
  152. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum Bovver viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402CrossRefGoogle Scholar
  153. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278CrossRefGoogle Scholar
  154. Maiti B, Shekar M, Khusiramani R, Karunasagar I, Karunasagar I (2009) Evaluation of RAPD-PCR and protein profile analysis to differentiate Vibrio harveyi strains prevalent along the southwest coast of India. J Genet 88(3):273–279CrossRefGoogle Scholar
  155. Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80CrossRefGoogle Scholar
  156. Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44CrossRefGoogle Scholar
  157. Manjula K, Podile AR (2001) Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47(7):618–625. doi: 1139/w01-057 Google Scholar
  158. Mansoor F, Sultana V, Haque SE (2007) Enhancement of biocontrol potential of Pseudomonas aeroginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39(6):2113–2119Google Scholar
  159. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34. doi: 10.1093/jxb/erh010 CrossRefGoogle Scholar
  160. Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319CrossRefGoogle Scholar
  161. Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung been cuttings. J Plant Growth Regul 18:49–53CrossRefGoogle Scholar
  162. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572. doi: 10.1016/j.plaphy.2004.05.009 CrossRefGoogle Scholar
  163. McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990Google Scholar
  164. Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335CrossRefGoogle Scholar
  165. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 472:110–117CrossRefGoogle Scholar
  166. Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230. doi: 10.1134/S0026261706020184 CrossRefGoogle Scholar
  167. Minorsky PV (2008) On the inside. Plant Physiol 146:323–324CrossRefGoogle Scholar
  168. Mirza MS, Mehnaz S, Normand P et al (2006) Molecular characterization and PCR detection of a nitrogen fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170. doi: 10.1007/s00374-006-0074-9 CrossRefGoogle Scholar
  169. Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4(2):92–96Google Scholar
  170. Montesinos E (2003) Plant-associated microorganisms: a view from the scope of microbiology. Int Microbiol 6:221–223. doi: 10.1007/s10123-003-0141-0 CrossRefGoogle Scholar
  171. Mrkovacki N, Milic V (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application. Ann Microbiol 51:145–158Google Scholar
  172. Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784CrossRefGoogle Scholar
  173. Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572. doi: 10.1007/BF00327716 CrossRefGoogle Scholar
  174. Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296Google Scholar
  175. Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46(4):493–510. doi: 10.1023/A:1014131131808 CrossRefGoogle Scholar
  176. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153CrossRefGoogle Scholar
  177. Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant soil Environ 52(3):119–129Google Scholar
  178. Nick G, de Lajudie P, Eardly BD et al (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368CrossRefGoogle Scholar
  179. Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283CrossRefGoogle Scholar
  180. Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881. doi: 10.1094/PHYTO.2001.91.9.873 CrossRefGoogle Scholar
  181. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522CrossRefGoogle Scholar
  182. Nowak J (1998) Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant 34:122–130CrossRefGoogle Scholar
  183. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372CrossRefGoogle Scholar
  184. Omar MNA, Mahrous NM, Hamouda AM (1996) Evaluating the efficiency of inoculating some diazatrophs on yield and protein content of 3 wheat cultivars under graded levels of nitrogen fertilization. Ann Agric Sci 41:579–590Google Scholar
  185. Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2(1):39–50CrossRefGoogle Scholar
  186. Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384. doi: 10.1016/S0038-0717(97)00121-1 CrossRefGoogle Scholar
  187. Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9. doi: 10.1006/bcon.2000.0815 CrossRefGoogle Scholar
  188. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J Appl Microbiol 86:36–44CrossRefGoogle Scholar
  189. Pathma J, Kennedy RK, Sakthivel N (2011) Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 77–105. doi:  10.1007/978-3-642-20332-9-4
  190. Pengnoo A, Kusongwiriyawong C, Nilratana L, Kanjanamaneesathian M (2000) Greenhouse and field trials of the bacterial antagonists in pellet formulations to suppress sheath blight of rice caused by Rhizoctonia solani. Biocontrol 45(2):245–256. doi: 10.1023/A:1009948404423 CrossRefGoogle Scholar
  191. Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 31:29–49CrossRefGoogle Scholar
  192. Pieterse CMJ, Johan A, Pelt V, Saskia CM, Wees V et al (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur J Plant Pathol 107(1):51–61. doi: 10.1023/A:1008747926678 CrossRefGoogle Scholar
  193. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11CrossRefGoogle Scholar
  194. Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069CrossRefGoogle Scholar
  195. Reinhold-Hurek B, Hurek T, Gillis M et al (1993) Azoarcus gen. nov., nitrogen-fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584CrossRefGoogle Scholar
  196. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3(11):731–736CrossRefGoogle Scholar
  197. Ribaudo C, Krumpholz E, Cassan F, Bottini R, Cantore M, Cura A (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 24:175–185. doi: 10.1007/s00344-005-0128-5 CrossRefGoogle Scholar
  198. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  199. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836. doi: 10.1071/PP01045 Google Scholar
  200. Roberts SC, Shuler ML (1997) Large scale plant cell culture. Curr Opin Biotechnol 8:154–159CrossRefGoogle Scholar
  201. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980CrossRefGoogle Scholar
  202. Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319CrossRefGoogle Scholar
  203. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi: 10.1007/s11104-009-0001-6 CrossRefGoogle Scholar
  204. Ryu CM, Farag MA et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi: 10.1073/pnas.0730845100 CrossRefGoogle Scholar
  205. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Kloepper JW et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026CrossRefGoogle Scholar
  206. Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289CrossRefGoogle Scholar
  207. Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253CrossRefGoogle Scholar
  208. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648CrossRefGoogle Scholar
  209. Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol 47:698–705. doi: 10.1139/w01-072 Google Scholar
  210. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292CrossRefGoogle Scholar
  211. Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands D (eds) Methods in phytobacteriology. Akademiai Kiato, Budapest, pp 199–204Google Scholar
  212. Schippers B et al (1988) Biological control of pathogens with rhizobacteria. Philos Trans R Soc B-Biol Sci 318:283–293. doi: 10.1098/rstb.1988.0010 CrossRefGoogle Scholar
  213. Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486CrossRefGoogle Scholar
  214. Segovia L, Young JPW, Matinez-Romero E (1993) Reclassification of American Rhizobium leguminosarum Biovar Phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377CrossRefGoogle Scholar
  215. Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants–new avenues for phytochemicals. J Phytol 2:91–100Google Scholar
  216. Sgroy V, Cassan F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. doi: 10.1007/s00253-009-2116-3 CrossRefGoogle Scholar
  217. Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975CrossRefGoogle Scholar
  218. Sharaf-Eldin M, Elkholy S, Fernandez JA et al (2008) Bacillus subtilis FZB24 affects flower quantity and quality of Saffron (Crocus sativus). Planta Med 74:1316–1320CrossRefGoogle Scholar
  219. Siddiqui IA, Ehteshamul-Haque S, Shaukat SS (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149:337–346CrossRefGoogle Scholar
  220. Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144. doi: 10.1007/s003740050475 CrossRefGoogle Scholar
  221. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240CrossRefGoogle Scholar
  222. Sousa CS, Soares ACF, Garrido MS (2008) Characterization of streptomycetes with potential to promote plant growth and biocontrol. Sci Agric 65:50–55. Google Scholar
  223. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. In: Unden F (ed) FEMS microbiol rev. Blackwell Publishing Ltd., New York pp 1–24. doi: 10.1111/j.1574-6976.2007.00072.x
  224. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefGoogle Scholar
  225. Stein T, Hayen-Schneg N, Fendrik I (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–971CrossRefGoogle Scholar
  226. Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant defence in arthropode management programs. Arch Insect Biochem Physiol 51:222–235. doi: 10.1002/arch.10066 CrossRefGoogle Scholar
  227. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. J Appl Soil Ecol 15:183–190CrossRefGoogle Scholar
  228. Stutz EW, Defago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185. doi: 10.1094/Phyto-76-181 CrossRefGoogle Scholar
  229. Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234CrossRefGoogle Scholar
  230. Sultana V, Ara J, Parveen G, Haque SE, Ahmad VU (2006) Role of Crustacean chitin, fungicides and fungal antagonists on the efficacy of Pseudomonas aeruginosa in protecting Chilli from root rot. Pak J Bot 38(4):1323–1331Google Scholar
  231. Sundheim L, Poplawsky AR, Ellingboe AH (1988) Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol Mol Plant Pathol 33:483–491CrossRefGoogle Scholar
  232. Suslow TV, Kloepper JW, Schroth MN, Burr TJ (1979) Beneficial bacteria enhance plant growth. Calif Agric 33:15–17Google Scholar
  233. Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56:103–110Google Scholar
  234. Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385. doi: 10.1023/A:1023901107182 CrossRefGoogle Scholar
  235. Terkina IA, Parfenova VV, Ahn TS (2006) Antagonistic activity of actinomycetes of Lake Baikal. Appl Biochem Microbiol 42:173–176CrossRefGoogle Scholar
  236. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  237. Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers, 3rd edn. Macmillan Publishing, New York, p 694Google Scholar
  238. Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21:941–945. doi: 10.1007/s11274-004-6820-y CrossRefGoogle Scholar
  239. van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi: 10.1007/s10658-007-9165-1 CrossRefGoogle Scholar
  240. Velazquez E, Igual JM, Willems A et al (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021CrossRefGoogle Scholar
  241. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141CrossRefGoogle Scholar
  242. Verma JP et al (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983CrossRefGoogle Scholar
  243. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  244. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum-sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefGoogle Scholar
  245. Wang ET, Martinez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb Ecol 40:25–32Google Scholar
  246. Wei L, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224CrossRefGoogle Scholar
  247. Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407. doi: 10.1146/ CrossRefGoogle Scholar
  248. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348CrossRefGoogle Scholar
  249. Werner T, Motyka V, Laucou V, Smets R, Onckelen HV, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550CrossRefGoogle Scholar
  250. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefGoogle Scholar
  251. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151. doi: 10.1016/S0065-2113(08)60948-7 CrossRefGoogle Scholar
  252. Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134. doi: 10.1128/AEM.72.2.1129-1134 CrossRefGoogle Scholar
  253. Yamada Y, Nihira T (1998) Microbial hormones and microbial chemical ecology. In: Barton DHR, Nakanishi K (ed) Comprehensive natural products chemistry. Elsevier Sciences, Amsterdam 8:377–413Google Scholar
  254. Zahir ZA, Muhammad A, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168. doi: 10.1016/S0065-2113(03)81003-9 CrossRefGoogle Scholar
  255. Zaied KA, El-Diasty ZM, El-Rhman MMA, El-Sanossy ASO (2009) Effect of horizontal DNA transfer between Azotobacter strains on protein patterns of Azotobacter transconjugants and biochemical traits in bioinoculated Okra (Abelmoschus Esculentus, L.). Aust J Basic Appl Sci 3(2):748–760Google Scholar
  256. Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50CrossRefGoogle Scholar
  257. Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571CrossRefGoogle Scholar
  258. Zhang F, Dasthi N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and Soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459CrossRefGoogle Scholar
  259. Zhang H et al (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate accumulating microorganism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163. doi: 10.1099/ijs.0.02520-0 CrossRefGoogle Scholar
  260. Zhao J, Zhou L, Wub J (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide–protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522. doi: 10.1016/j.procbio.2010.05.034 CrossRefGoogle Scholar
  261. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Botany, Microbial Ecology LaboratoryGauhati UniversityGuwahatiIndia

Personalised recommendations