Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum

  • Simone Raposo Cotta
  • Fabio Faria da Mota
  • Gleiser Tupinambá
  • Kelly Ishida
  • Sonia Rozental
  • Davi Oliveira e Silva
  • Antônio Jorge Ribeiro da Silva
  • Humberto Ribeiro Bizzo
  • Daniela Sales Alviano
  • Celuta Sales Alviano
  • Lucy Seldin
Original Paper

Abstract

In a search for an antifungal substance with activity against the dermatophyte fungus Trichophyton rubrum, strain POC 115 was chosen among different Paenibacillus strains for its phenotypic and genetic characterization and for preliminary characterization of its antimicrobial substance. Strain POC 115 was identified as belonging to Paenibacillus kribbensis. Physico-chemical characterization of the antimicrobial substance showed that it was not stable during heat and organic solvents treatments, but its activity was preserved at a wide range of pH and after treatment with pronase E, trypsin and DNase I. The crude concentrated supernatant of POC 115 culture was partially purified and the fraction presenting antimicrobial activity was further analyzed by UPLC/Mass Spectrometry. Two peaks were observed at 2.02 (mass 1,207 D) and 2.71 (mass 1,014 D) min in the mass chromatogram. The antimicrobial substance produced by POC 115 was correlated to iturin family compounds based on a set of primers designed for the amplification of PKS operon in the POC 115 genome. As happens with the mode of action of the antibiotics of the iturin group, the AMS produced by POC 115 caused the disruption of cytoplasmic membrane of T. rubrum and the subsequent withdraw of the intracellular material. This is the first report on the production of antimicrobial substances in P. kribbensis, and it may be of great relevance as an alternative or supplementary substance to antifungal drugs currently used against dermatophytes.

Keywords

Antimicrobial substance Paenibacilluskribbensis Trichophyton rubrum Pathogenic dermatophytes 

References

  1. Aktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P (2008) Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1, 3-glucanase production. Can J Microbiol 54:577–587CrossRefGoogle Scholar
  2. Alvarez VM, von der Weid I, Seldin L, Santos AL (2006) Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett Appl Microbiol 43:625–630CrossRefGoogle Scholar
  3. Aperce CC, Burkey TE, KuKanich B, Crozier-Dodson BA, Dritz SS, Minton JE (2010) Interaction of Bacillus species and Salmonella enterica serovar Typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells. J Anim Sci 88:1649–1656CrossRefGoogle Scholar
  4. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64:253–260CrossRefGoogle Scholar
  5. Baeza LC, Bailão AM, Borges CL, Pereira M, Soares CM, Mendes Giannini MJ (2007) cDNA representational difference analysis used in the identification of genes expressed by Trichophyton rubrum during contact with keratin. Microbes Infect 9:1415–1421CrossRefGoogle Scholar
  6. Besson F, Peypoux F, Michel G (1978) Action of mycosubtilin and of bacillomycin L on Micrococcus luteus cells and protoplasts. Influence of the polarity of the antibiotics upon their action on the bacterial cytoplasmic membrane. FEBS Lett 90:36–40CrossRefGoogle Scholar
  7. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299CrossRefGoogle Scholar
  8. Fickers P, Leclère V, Guez J-S, Béchet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res Microbiol 159:449–457CrossRefGoogle Scholar
  9. Fortes TO, Alviano DS, Tupinambá G, Padrón TS, Antoniolli AR, Alviano CS, Seldin L (2008) Production of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasiliensis. Microbiol Res 163:200–207CrossRefGoogle Scholar
  10. Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecol 45:302–316CrossRefGoogle Scholar
  11. Gordon RE, Haynes WC, Pang HN (1973) The genus Bacillus. Agriculture handbook no. 427. US Department of Agriculture, WashingtonGoogle Scholar
  12. Hay RJ (2001) The future of onychomycosis therapy may involve a combination of approaches. Br J Dermatol 145(Suppl 60):3–8Google Scholar
  13. Jurgensen MF, Davey CB (1971) Nonsymbiotic nitrogen-fixing microorganisms in forest and tundra soils. Plant Soil 34:341–356CrossRefGoogle Scholar
  14. Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50:220–228Google Scholar
  15. Kajimura Y, Sugiyama M, Kaneda M (1995) Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J Antibiot 48:1095–1103Google Scholar
  16. Kane J, Summerbell R, Sigler L, Krajden S, Land G (1997) Laboratory handbook of dermatophytes: a clinical guide and laboratory manual of dermatophytes and other filamentous fungi from skin, hair, and nails. Star Publishing Company, Belmont, CAGoogle Scholar
  17. Kurusu K, Ohba K, Arai T, Fukushima K (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot 40:1506–1514Google Scholar
  18. Lakshmipathy DT, Kannabiran K (2010) Review on dermatomycosis: pathogenesis and treatment. Nat Sci 2:726–731Google Scholar
  19. Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10CrossRefGoogle Scholar
  20. Ma M, Wang C, Ding Y, Li L, Shen D, Jiang X, Guan D, Cao F, Chen H, Feng R, Wang X, Ge Y, Yao L, Bing X, Yang X, Li J, Du B (2011) Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol 193:311–312CrossRefGoogle Scholar
  21. Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16–23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: Akkermans ADL, van Elsas JD, de Bruijn JF (eds), Molecular microbial ecology manual. Kluwer, The Netherlands. pp. 3.3.2: 1–8Google Scholar
  22. Montefusco A, Nakamura LK, Labeda PD (1993) Bacillus peoriae sp. nov. Int J Syst Bacteriol 43:388–390CrossRefGoogle Scholar
  23. Mota FF, Nóbrega A, Marriel IE, Paiva E, Seldin L (2002) Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize planted in Cerrado soil. Appl Soil Ecol 20:119–132CrossRefGoogle Scholar
  24. Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629CrossRefGoogle Scholar
  25. Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA (2003) Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 47:82–86CrossRefGoogle Scholar
  26. Nasir MN, Thawani A, Kouzayha A, Besson F (2010) Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. Colloids Surf B Biointerfaces 78:17–23CrossRefGoogle Scholar
  27. National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard. NCCLS document M38-A. Clinical and Laboratory Standards Institute, Villanova, PAGoogle Scholar
  28. Osborne CS, Leitner I, Hofbauer B, Fielding CA, Favre B, Ryder NS (2006) Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine. Antimicrob Agents Chemother 50:2234–2236CrossRefGoogle Scholar
  29. Peypoux F, Pommier MT, Das BC, Besson F, Delcambe L, Michel G (1984) Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot 37:1600–1604Google Scholar
  30. Rosado AS, Seldin L (1993) Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J Microbiol Biotech 90:521–528Google Scholar
  31. Ross N, Villemur R, Marcandella E, Deschênes L (2001) Assessment of changes in biodiversity when a community of ultramicrobacteria isolated from groundwater is stimulated to form a biofilm. Microbial Ecol 42:56–68Google Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  33. Seldin L, Alviano CS (2010) Antimicrobial substances produced by Paenibacillus polymyxa, P. brasilensis and P. peoriae against phytopathogenic microorganisms. In: De Araújo ASF et al (eds) Microbial ecology of tropical soils, Chapter 8. Nova Science Publishers, Inc., New York, pp 157–166Google Scholar
  34. Seldin L, Dubnau D (1985) DNA homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans and others nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154CrossRefGoogle Scholar
  35. Seldin L, Penido EGC (1986) Identification of Bacillus azotofixans using API tests. Antonie van Leeuwenhoek 52:403–409CrossRefGoogle Scholar
  36. Seldin L, van Elsas JD, Penido ECG (1983) Bacillus nitrogen fixers from brazilian soils. Plant Soil 70:243–255CrossRefGoogle Scholar
  37. Seldin L, van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and roots. Int J Syst Bacteriol 34:451–456CrossRefGoogle Scholar
  38. Seldin L, Rosado AS, Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere and non-rhizosphere soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868Google Scholar
  39. Stein T (2008) Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lantibiotic-producing bacteria. Rapid Commun Mass Spectrom 22:1146–1152CrossRefGoogle Scholar
  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  41. Tupinambá G, da Silva AJ, Alviano CS, Souto-Padron T, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol 105:1044–1053CrossRefGoogle Scholar
  42. Vollú RE, Fogel R, Santos SCC, Mota FF, Seldin L (2006) Evaluation of the diversity of cyclodextrin-producing Paenibacillus graminis strains by different molecular methods. J Microbiol 44:591–599Google Scholar
  43. von der Weid I, Paiva E, Nóbrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381CrossRefGoogle Scholar
  44. von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153CrossRefGoogle Scholar
  45. von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, Seldin L (2003) Antimicrobial activity of Paenibacillus peoriae against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1152–1160CrossRefGoogle Scholar
  46. von der Weid I, Maraha N, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol 21:1591–1597CrossRefGoogle Scholar
  47. Yazdanparast SA, Barton RC (2006) Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J Med Microbiol 55:1577–1581CrossRefGoogle Scholar
  48. Yoon JH, Oh HM, Yoon BD, Kang KH, Park YH (2003) Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53:295–301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Simone Raposo Cotta
    • 1
  • Fabio Faria da Mota
    • 1
  • Gleiser Tupinambá
    • 2
  • Kelly Ishida
    • 3
  • Sonia Rozental
    • 3
  • Davi Oliveira e Silva
    • 2
  • Antônio Jorge Ribeiro da Silva
    • 4
  • Humberto Ribeiro Bizzo
    • 5
  • Daniela Sales Alviano
    • 2
  • Celuta Sales Alviano
    • 2
  • Lucy Seldin
    • 1
  1. 1.Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de GóesUniversidade Federal do Rio de Janeiro, Centro de Ciências da SaúdeRio de JaneiroBrazil
  2. 2.Laboratório de Estruturas de Superfície de Microrganismos, Instituto de Microbiologia Prof. Paulo de GóesRio de JaneiroBrazil
  3. 3.Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas FilhoRio de JaneiroBrazil
  4. 4.Núcleo de Pesquisa de Produtos NaturaisUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.EMBRAPA Agroindústria de AlimentosRio de JaneiroBrazil

Personalised recommendations