Advertisement

Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil

  • Adel Aouiche
  • Nasserdine SabaouEmail author
  • Atika Meklat
  • Abdelghani Zitouni
  • Christian Bijani
  • Florence Mathieu
  • Ahmed Lebrihi
Original Paper

Abstract

An actinomycete strain designated PAL54, producing an antibacterial substance, was isolated from a Saharan soil in Ghardaïa, Algeria. Morphological and chemical studies indicated that this strain belonged to the genus Saccharothrix. Analysis of the 16S rDNA sequence showed a similarity level ranging between 96.9 and 99.2% within Saccharothrix species, with S. longispora DSM 43749T, the most closely related. DNA–DNA hybridization confirmed that strain PAL54 belonged to Saccharothrix longispora. It showed very strong activity against pathogenic Gram-positive and Gram-negative bacteria responsible for nosocomial infections and resistant to multiple antibiotics. Strain PAL54 secreted the antibiotic optimally during mid-stationary and decline phases of growth. One antibacterial compound was isolated from the culture broth and purified by HPLC. The active compound was elucidated by uv-visible and NMR spectroscopy and by mass spectrometry. The results showed that this compound was a d(−)-threo chloramphenicol. This is the first report of chloramphenicol production by a Saccharothrix species.

Keywords

Actinomycete Taxonomy Saccharothrix Antibacterial activities Chloramphenicol 

References

  1. Aggoune-Khinache N, Bensersa D, Henniche FZ, Daoudi M, Abdouni MA, Chabani A, Tiouit D, Naim M (2008) Metallo-beta-lactamases producing Pseudomonas aeruginosa in Algeria. Med Mal Infect 39:413–414CrossRefGoogle Scholar
  2. Asselineau J, Zalta P (1973) Les antibiotiques: structure et exemples de mode d’action. Hermann, ParisGoogle Scholar
  3. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421–423Google Scholar
  4. Betina V (1973) Bioautography in paper and thin layer chromatography and its scope in the antibiotic field. J Chromatogr 78:41–51CrossRefGoogle Scholar
  5. Boudjella H, Zitouni A, Coppel C, Mathieu F, Monje M-C, Sabaou N, Lebrihi A (2010) Antibiotic R2, a new angucyclinone compound from Streptosporangium sp. Sg3. J Antibiot 63:709–711CrossRefGoogle Scholar
  6. Bush BD, Fitchett GV, Gates DA, Langely D (1993) Carbocyclic nucleosides from a species of Saccharothrix. Phytochemistry 32:737–739CrossRefGoogle Scholar
  7. Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466CrossRefGoogle Scholar
  8. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142Google Scholar
  9. Doull JL, Vining LC, Stuttard C (1983) A cryptic plasmid in the chloramphenicol-producing actinomycete, Streptomyces phaeochromogenes. FEMS Microbiol Lett 16:349–352CrossRefGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  11. Genilloud O, Gonzalez I, Salazar O, Martin J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–789CrossRefGoogle Scholar
  12. Grund E, Kroppenstedt RM (1989) Transfer of five Nocardiopsis species to the genus Saccharothrix Labeda et al. 1984. Syst Appl Microbiol 10:267–274CrossRefGoogle Scholar
  13. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferm Technol 65:501–509CrossRefGoogle Scholar
  14. Horvath G, Brazhnikova MG, Konstantinova NV, Tolstykh IV, Potapova NP (1979) The structure of nocamycin, a new antitumor antibiotic. J Antibiot 32:555–558Google Scholar
  15. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132Google Scholar
  16. Kalinovskaya NI, Kalinovsky AI, Romanenko LA, Dmitrenok PS, Kuznetsova TA (2010) New angucyclines and antimicrobial diketopiperazines from the marine mollusk-derived actinomycete Saccharothrix espanaensis An 113. Nat Prod Commun 5:597–602Google Scholar
  17. Katsumi S, Kazshi T, Hiroshi O (2005) Pathogen occurrence and antimicrobial susceptibility of urinary tract infection cases during a 20-year period (1983–2002) at a single institution in Japan. Jpn J Infect Dis 58:303–308Google Scholar
  18. Kelly KL, Judd DB (1976) Color. Universal Language and Dictionary of Names–National bureau of standards, special publication 440. US Department of Commerce, WashingtonGoogle Scholar
  19. Kim B-Y, Brown R, Labeda DP, Goodfellow M (2011) Reclassification of ‘Dactylosporangium variesporum’ as Saccharothrix variisporea corrig. (ex Tomita et al. 1977) sp. nov., nom. rev. Int J Syst Evol Microbiol 61:310–314CrossRefGoogle Scholar
  20. Kroppenstedt RM, Evtushenko LI (2006) The family Nocardiopsaceae. In: Dworkin M et al (eds) The prokaryotes. A handbook on biology of bacteria, 3rd edn. Springer, New York, pp 754–795Google Scholar
  21. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetic analysis and sequence alignment. Briefings Bioinfo 5:150–163CrossRefGoogle Scholar
  22. Kumarasamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infect Dis 10:597–602CrossRefGoogle Scholar
  23. Labeda DP (2002) The family Actinosynnemataceae. In: Dworkin M et al (eds) The prokaryotes, 3rd edn. Springer, New York, pp 654–668Google Scholar
  24. Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA (1984) Saccharothrix, a new genus of the Actinomycetales related to Nocardiopsis. Int J Syst Bacteriol 34:426–431CrossRefGoogle Scholar
  25. Lamari L, Zitouni A, Boudjella H, Badji B, Sabaou N, Lebrihi A, Lefebvre G, Seguin E, Tillequin F (2002) New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55:696–701Google Scholar
  26. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  27. Lechevalier MP, de Bievre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  28. Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clinical Microbiol 38:471Google Scholar
  29. Locci R (1989) Streptomycetes and related genera. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2451–2492Google Scholar
  30. Marchal N, Bourdon JL, Richard CL (1987) Les milieux de culture pour l’isolement et l’identification biochimique des bactéries. Doin Press, ParisGoogle Scholar
  31. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  32. Merrouche R, Bouras N, Coppel Y, Mathieu F, Monje M-C, Sabaou N, Lebrihi A (2010) Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture broth of Saccharothrix algeriensis. J Nat Prod 73:1164–1166CrossRefGoogle Scholar
  33. Messai Y, Iabadene H, Benhassine T, Alouache S, Tazir M, Gautier V, Arlet G, Bakour R (2008) Prevalence and characterization of extended-spectrum β-lactamases in Klebsiella pneumoniae in Algiers hospitals (Algeria). Pathol Biol 56:319–325CrossRefGoogle Scholar
  34. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117CrossRefGoogle Scholar
  35. Murakami R, Shinozaki J, Kajiura T, Kozone I, Takagi M, Shin-Ya K, Seto H, Hayakawa Y (2009) Ammocidins B, C and D, new cytotoxic 20-membered macrolides from Saccharothrix sp. AJ9571. J Antibiot 62:123–127CrossRefGoogle Scholar
  36. Sabaou N, Boudjella H, Bennadji A, Mostefaoui A, Zitouni A, Lamari L, Bennadji H, Lefebvre G, Germain P (1998) Les sols des oasis du Sahara algérien, source d’actinomycètes rares producteurs d’antibiotiques. Sécheresse 9:147–153Google Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  38. Sekhsokh Y, Chadli M, El Hamzaoui SA (2008) Fréquence et sensibilité aux antibiotiques des bactéries isolées dans les urines. Med Mal Infect 38:324–327CrossRefGoogle Scholar
  39. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 13:313–340CrossRefGoogle Scholar
  40. Singh MP, Petersen PJ, Weiss WJ, Kong F, Greenstein M (2000) Saccharomicins, novel heptadecaglycoside antibiotics produced by Saccharothrix espanaensis: antibacterial and mechanistic activities. Antimicrob Agents Chemother 44:2154–2159CrossRefGoogle Scholar
  41. Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine actinomycetes. Indian J Microbiol 48:410–431CrossRefGoogle Scholar
  42. Takahashi A, Hotta K, Saito N, Morioka M, Okami Y, Umezawa H (1986) Production of novel antibiotic, dopsisamine by a new subspecies of Nocardiopsis mutabilis with multiple antibiotic resistance. J Antibiot 39:175–183Google Scholar
  43. Takeuchi M, Takahashi S, Enokita R, Sakaida Y, Haruyama H, Nakamura T, Katayama T, Inukai M (1992) Galacardines A and B, new glycopeptide antibiotics. J Antibiot 45:297–305Google Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  45. Touati A, Benallaoua S, Forte D, Madoux J, Brasme L, de Champs C (2006) First report of CTX-M-15 and CTX-M-3 beta-lactamases among clinical isolates of Enterobacteriaceae in Bejaia, Algeria. Int J Antimicrob Agents 27:397–402CrossRefGoogle Scholar
  46. Umezawa H, Tazaki T, Okami Y, Fukuyama S (1949) On the new source of chloromycetin, Streptomyces omiyaensis. J Antibiot 3:292–296Google Scholar
  47. Valan Arasu M, Duraipandiyan V, Agastian P, Ignacimuthu S (2008) Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. J Mycol Med 18:147–153CrossRefGoogle Scholar
  48. Vertesy L, Barbone FP, Cashmen E, Decker H, Ehrlich K, Jordan B, Knauf M, Schummer D, Segeth MP, Wink J, Seibert G (2001) Pluraflavins, potent antitumor antibiotics from Saccharothrix sp. DSM 12931. J Antibiot 54:718–729Google Scholar
  49. Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  50. Yunis AA (1988) Chloramphenicol: relation of structure to activity and toxicity. Ann Rev Pharmacol Toxicol 28:83–100CrossRefGoogle Scholar
  51. Zitouni A, Lamari L, Boudjella H, Badji B, Sabaou N, Gaouar A, Mathieu F, Lebrihi A, Labeda DP (2004a) Saccharothrix algeriensis sp. nov., isolated from Saharan soil. Int J Syst Evol Microbiol 54:1377–1381CrossRefGoogle Scholar
  52. Zitouni A, Mathieu F, Coppel Y, Pont F, Sabaou N, Lebrihi A (2004b) Mutactimycin PR, a new anthracycline antibiotic from Saccharothrix sp. SA 103. II. Physico-chemical properties and structure elucidation. J Antibiot 57:373–378Google Scholar
  53. Zitouni A, Boudjella H, Lamari L, Badji B, Mathieu F, Lebrihi A, Sabaou N (2005) Nocardiopsis and Saccharothrix genera in Saharan soils in Algeria: isolation, biological activities and partial characterization of antibiotics. Res Microbiol 156:984–993CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Adel Aouiche
    • 1
  • Nasserdine Sabaou
    • 1
    Email author
  • Atika Meklat
    • 1
  • Abdelghani Zitouni
    • 1
  • Christian Bijani
    • 2
    • 3
  • Florence Mathieu
    • 4
  • Ahmed Lebrihi
    • 4
    • 5
  1. 1.Laboratoire de Recherche sur les Produits Bioactifs et la Valorisation de la BiomasseEcole Normale Supérieure de KoubaAlgerAlgeria
  2. 2.Laboratoire de Chimie de Coordination (LCC)CNRSToulouseFrance
  3. 3.Université de Toulouse, UPS, INPT, LCCToulouseFrance
  4. 4.Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de ToulouseUniversité de ToulouseCastanet-Tolosan CedexFrance
  5. 5.Université Moulay IsmailMeknesMaroc

Personalised recommendations