World Journal of Microbiology and Biotechnology

, Volume 28, Issue 2, pp 677–686 | Cite as

Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors

  • Kouhei MizunoEmail author
  • Yui Morishita
  • Akiko Ando
  • Naofumi Tsuchiya
  • Mai Hirata
  • Kenji Tanaka
Original Paper


The biogenic production of hydrogen sulfide is a serious problem associated with wastewater treatment. The aim of this study was to investigate the inhibitory effect of nitrate on the dynamics of sulfate-reducing bacteria (SRB) community in a laboratory-scale wastewater reactor, originating from a denitrifying plant using activated sludge. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis targeting the dsrB (dissimilatory sulfite reductase) gene was used in combination with chemical analyses and measurement of oxidation and reduction potential (ORP). The reactors were initially dosed with 1.0 and 4.0 g/L potassium nitrate and anaerobically incubated for 490 h. Addition of 4.0 g/L nitrate to the reactor was associated with a prolonged inhibition (over 300 h, i.e., 12.5 days) of sulfate reduction and this was consistent with a rapid decrease in ORP associated with nitrate depletion. The DGGE analysis revealed that nitrate addition remarkably attenuated a distinct group of dsrB related to Desulfovibrio, whereas other dsrB groups were not influenced. Furthermore, another sulfate reduction by Syntrophobacter in the later stages of the incubation period occurred in both reactors (regardless of the nitrate concentration), suggesting that different SRB groups are associated with sulfate reduction at different stages of the wastewater treatment process.


Sulfate-reducing bacteria Desulfovibrio Bacterial community dynamics Activated sludge Dissimilatory sulfite reductase 



Sulfate-reducing bacteria


Oxidation and reduction potential


Denaturing gradient gel electrophoresis


Polymerase chain reaction


Chemical oxygen demand


Sodium dodecyl sulfate



We thank the staff of the wastewater facility for their help with sample collection. We also thank Dr. Ryuji Kondo, Fukui Prefectural University, for providing helpful discussions relating to the work.


  1. Altschul DJ, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  2. Bernardina LM, Kuijk V, Stams AJM (1995) Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Antonie van Leeuwenhoek 68:293–296CrossRefGoogle Scholar
  3. Chi Fru E (2010) Microbial evolution of sulphate reduction when lateral gene transfer is geographically restricted. Int J Syst Evol Microbiol doi:  10.1099/ijs.0.026914-0
  4. Dar SA, Yao L, Dongen U, Kuenen JG, Muyzer G (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604CrossRefGoogle Scholar
  5. De Lomas JG, Corzo A, Gonzalez JM, Andrades JA, Iglesias E, Montero MJ (2006) Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale. Biotechnol Bioeng 93:801–811CrossRefGoogle Scholar
  6. Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfer of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289CrossRefGoogle Scholar
  7. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205CrossRefGoogle Scholar
  8. Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol 5:607–617CrossRefGoogle Scholar
  9. Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, Voordouw G (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate- reducing bacteria from oil field in Argentina. Appl Environ Microbiol 74:4324–4335CrossRefGoogle Scholar
  10. Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950CrossRefGoogle Scholar
  11. Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652CrossRefGoogle Scholar
  12. Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67:3314–3318CrossRefGoogle Scholar
  13. Kawahara N, Shigematsu K, Miura S, Miyadai T, Kondo R (2008) Distribution of sulfate-reducing bacteria in fish farm sediments on the coast southern Fukui prefecture, Japan. Plankton Benthos Res 3:42–45CrossRefGoogle Scholar
  14. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035CrossRefGoogle Scholar
  15. Kondo R, Buntani J (2007) Comparison of the diversity of sulfate-reducing bacterial communities in the water column and the surface sediments of a Japanese meromictic lake. Limnology 8:131–141CrossRefGoogle Scholar
  16. Kondo R, Nedwell DB, Purdy KJ, Silva SQ (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21:145–157CrossRefGoogle Scholar
  17. McInerney MJ, Stams AJM, Boone DR (2005) Genus I. Syntrophobacter. Bergy’s manual of systematic bacteriology 2nd ed Springer New York, pp 1021–1027Google Scholar
  18. Mohanakrishnan J, Gutierrez O, Meyer RL, Yuan Z (2008) Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor. Water Res 42:3961–3971CrossRefGoogle Scholar
  19. Mukhopadhyay A et al (2007) Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010CrossRefGoogle Scholar
  20. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454Google Scholar
  21. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  22. Padival N, Kimbell WA, Redner JA (1995) Use of iron salts to control dissolved sulfide in trunk sewers. J Environ Eng 121:824–829CrossRefGoogle Scholar
  23. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730Google Scholar
  24. Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  25. Schramm A, Santegoeds CM, Nielsen HK, Ploug H, Wagner M, Pribyl M, Wanner J, Amann R, Beer DD (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65:4189–4196Google Scholar
  26. Shabir A, Dar LY, Dongen U, Kuenen JG, Muyzer G (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604CrossRefGoogle Scholar
  27. Stahl DA, Fishbain S, Klein M, Baker BJ, Wagner M (2002) Origins and diversification of sulfate-respiring microorganisms. Antonie Leeuwenhoek 81:189–195CrossRefGoogle Scholar
  28. Steenkamp DJ, Peck HD Jr (1981) Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. J Biol Chem 256:5450–5458Google Scholar
  29. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fish Res Board Can Bull 167:311Google Scholar
  30. Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) The effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793Google Scholar
  31. Zverlov V, Klein M, Lucker M, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi) sulfite reductase revisited. J Bacteriol 187:2203–2208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kouhei Mizuno
    • 1
    Email author
  • Yui Morishita
    • 1
  • Akiko Ando
    • 2
  • Naofumi Tsuchiya
    • 3
  • Mai Hirata
    • 4
  • Kenji Tanaka
    • 4
  1. 1.Department of Materials Science and Chemical EngineeringKitakyushu National College of TechnologyKitakyushuJapan
  2. 2.Practical Biotechnology Group, Bioresources Research Center, Research LaboratoryKyushu Electric Power Co., Inc.Saga-shiJapan
  3. 3.Enviroment DepartmentKyuden Sangyo Co., Inc.Higashi-ku, Fukuoka-shiJapan
  4. 4.Department of Biological and Environmental Chemistry, School of Humanity-Oriented Science and EngineeringKinki UniversityIizuka-shiJapan

Personalised recommendations