Advertisement

World Journal of Microbiology and Biotechnology

, Volume 28, Issue 1, pp 313–321 | Cite as

Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains

  • Sara Abolhassani Rad
  • Hossein Shahbani ZahiriEmail author
  • Kambiz Akbari Noghabi
  • Sarah Rajaei
  • Reza Heidari
  • Leila Mojallali
Original Paper

Abstract

In this study a comparison was made between type 1 and type 2 isopentenyl diphosphate isomerases (IDI) in improving lycopene production in Escherichia coli. The corresponding genes of Bacillus licheniformis and the host (i Bl and i Ec , respectively) were expressed in lycopene producing E. coli strains by pTlyciBl and pTlyciEc plasmids, under the control of tac promoter. The results showed that the overexpression of i Ec improved the lycopene production from 33 ± 1 in E. coli Tlyc to 68 ± 3 mg/gDCW in E. coli TlyciEc. In contrast, the expression of i Bl increased the lycopene production more efficiently up to 80 ± 9 mg/gDCW in E. coli TlyciBl. The introduction of a heterologous mevalonate pathway to elevate the IPP abundance resulted in a lycopene production up to 132 ± 5 mg/gDCW with i Ec in E. coli TlyciEc-mev and 181 ± 9 mg/gDCW with i Bl in E. coli TlyciBl-mev, that is, 4 and 5.6 times respectively. When fructose, mannose, arabinose, and acetate were each used as an auxiliary substrate with glycerol, lycopene production was inhibited by different extents. Among auxiliary substrates tested, only citrate was an improving one for lycopene production in all strains with a maximum of 198 ± 3 mg/gDCW in E. coli TlyciBl-mev. It may be concluded that the type 2 IDI performs better than the type 1 in metabolic engineering attempts for isoprenoid production in E. coli. In addition, the metabolic engineering of citrate pathway seems a promising approach to have more isoprenoid accumulation in E. coli.

Keywords

E. coli Metabolic engineering Lycopene Isopentenyl diphosphate isomerase (IDI) 

Notes

Acknowledgments

This work was supported by the National Institute of Genetic Engineering and Biotechnology.

References

  1. Alper H, Jin YS, Moxley JF et al (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164CrossRefGoogle Scholar
  2. Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616CrossRefGoogle Scholar
  3. Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659CrossRefGoogle Scholar
  4. Cheng Q (2006) Structural diversity and functional novelty of new carotenoid biosynthesis genes. J Ind Microbiol Biotechnol 33:552–559CrossRefGoogle Scholar
  5. Das A, Yoon SH, Lee SH et al (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512CrossRefGoogle Scholar
  6. Ducrey Sanpietro LM, Kula MR (1998) Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14:1007–1016Google Scholar
  7. Dutoit R, Ruyck J, Durisotti V et al (2008) Overexpression, physicochemical characterization, and modeling of a hyperthermophilic Pyrococcus furiosus type 2 IPP isomerase. Proteins 71:1699–1707CrossRefGoogle Scholar
  8. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61CrossRefGoogle Scholar
  9. Garcia-Asua G, Lang HP, Cogdell RJ et al (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends Plant Sci 3:445–449CrossRefGoogle Scholar
  10. Hahn FM, Baker JA, Poulter CD (1996) Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus Encodes idi, a Gene for isopentenyl diphosphate isomerase. J Bacteriol 178(3):619–624Google Scholar
  11. Hahn FM, Hurlburt AP, Poulter CD (1999) Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181(5):4499–4504Google Scholar
  12. Harada H, Yu F, Okamoto S et al (2009) Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Appl Microbiol Biotechnol 81:915–925CrossRefGoogle Scholar
  13. Hwang ES, Bowen PE (2002) Can the consumption of tomatoes or lycopene reduce cancer risk? Integr Cancer Ther 1:121–132Google Scholar
  14. Kajiwara S, Fraser PD, Kondo K et al (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426Google Scholar
  15. Kang MJ, Yoon SH, Lee YM et al (2005) Enhancement of Lycopene production in Escherichia coli by optimization of the lycopene synthetic Pathway. J Microbiol Biotechnol 15:880–886Google Scholar
  16. Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415CrossRefGoogle Scholar
  17. Kim SW, Kim JB, Jung WH et al (2006) Overproduction of beta-carotene from metabolically engineered Escherichia coli. Biotechnol Lett 28:897–904CrossRefGoogle Scholar
  18. Kim J, Kong MK, Lee SY et al (2010) Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World J Microbiol Biotechnol 26:2231–2239CrossRefGoogle Scholar
  19. Krinsky NI (1989) Antioxidant function of carotenoids. Free Radic Biol Med 7:617–635CrossRefGoogle Scholar
  20. Kuzuyama T, Seto H (2003) Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20:171–183CrossRefGoogle Scholar
  21. Lange BM, Rujan T, Martin W et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13172–13177CrossRefGoogle Scholar
  22. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11CrossRefGoogle Scholar
  23. Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546Google Scholar
  24. Rodriguez-Concepción M, Campos N, Lois LM et al (2000) Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett 473:328–332CrossRefGoogle Scholar
  25. Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135:78–84CrossRefGoogle Scholar
  26. Rohdich F, Hecht S, Gartner K et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163CrossRefGoogle Scholar
  27. Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524Google Scholar
  28. Ruther A, Misawa N, Boger P et al (1997) Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl Microbiol Biotechnol 48:162–167CrossRefGoogle Scholar
  29. Sandman G (1991) Biosynthesis of cyclic carotenoid: biochemistry and molecular genetics of the reaction sequence. Physiol Plantarum 83:186–193CrossRefGoogle Scholar
  30. Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chem biochem 3:629–635Google Scholar
  31. Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathway. Nat Biotechnol 18:750–753CrossRefGoogle Scholar
  32. Tao L, Wilczek J, Odom JM et al (2006) Engineering a beta-carotene ketolase for astaxanthin production. Metab Eng 8:523–531CrossRefGoogle Scholar
  33. Vadali RV, Fu Y, Bennett GN et al (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561CrossRefGoogle Scholar
  34. Wang CW, Oh MK, Liao JC (1999) Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng 62:235–241CrossRefGoogle Scholar
  35. Yoon SH, Lee YM, Kim JE et al (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032CrossRefGoogle Scholar
  36. Yoon SH, Kim JE, Lee SH et al (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139CrossRefGoogle Scholar
  37. Yoon SH, Lee SH, Das A et al (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotech 44:899–905Google Scholar
  38. Yuan LZ, Rouviere PE, Larossa RA et al (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90CrossRefGoogle Scholar
  39. Zahiri HS, Yoon SH, Keasling JD et al (2006) Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416CrossRefGoogle Scholar
  40. Zahiri HS, Noghabi KA, Samoodi M et al (2009) Effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli strains. Iranian J Biotechnol 7:224–232Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sara Abolhassani Rad
    • 1
  • Hossein Shahbani Zahiri
    • 1
    Email author
  • Kambiz Akbari Noghabi
    • 1
  • Sarah Rajaei
    • 1
  • Reza Heidari
    • 1
  • Leila Mojallali
    • 1
  1. 1.Department of Molecular GeneticsNational Institute of Genetic Engineering and BiotechnologyTehranI. R. Iran

Personalised recommendations