Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides

  • Hong-Juan Bai
  • Bin-Sheng Yang
  • Chun-Jing Chai
  • Guan-E. Yang
  • Wan-Li Jia
  • Zhi-Ben Yi
Original Paper


The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach. In this study, silver nanoparticles were successfully synthesized from AgNO3 by reduction of aqueous Ag+ ions with the cell filtrate of Rhodobacter sphaeroides. Nanoparticles were characterized by means of UV–vis absorption spectroscopy, X-Ray Diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (111), (200), (220) and (311) planes, bright circular spots in the selected are a electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. Also, the size of silver nanoparticles was controlled by the specific activity of nitrate reductase in the cell filtrate.


Rhodobacter sphaeroides Biosynthesis Silver nanoparticles Cell filtrate 



The authors gratefully acknowledge the financial supports from the Shanxi Province Postdoctoral Science Foundation, the Provincial Key Technology R&D Program of Shanxi Province, China (No. 20080311027-1), the Eighth Youth Innovation Science Fund Program of China North Industries Group Corportion.


  1. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63:764–766CrossRefGoogle Scholar
  2. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139CrossRefGoogle Scholar
  3. Bai HJ, Zhang ZM, Guo Y, Jia WL (2009a) Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res Lett 4:717–723CrossRefGoogle Scholar
  4. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009b) Biological synthesis of size-controlled cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloid Surf B 70:142–146CrossRefGoogle Scholar
  5. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surf A 339:134–139CrossRefGoogle Scholar
  6. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications, 1st edn. Imperial College Press, London, pp 45–52CrossRefGoogle Scholar
  7. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefGoogle Scholar
  8. Chen JH, Tao L, Li J (2006) Biochemistry laboratory, 6th ed. Science Press, Beijing, pp 63–64 (in Chinese)Google Scholar
  9. Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B Biointerfaces 80:26–33CrossRefGoogle Scholar
  10. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7CrossRefGoogle Scholar
  11. Gu ZX, Chen DM, Han YB, Chen ZG, Gu FR (2008) Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT 41:1082–1088CrossRefGoogle Scholar
  12. He SY, Guo ZR, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  13. He SY, Zhang Y, Guo ZR, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol Prog 24:476–480CrossRefGoogle Scholar
  14. Kannan P, John SA (2008) Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology 19:085602CrossRefGoogle Scholar
  15. Kerber NL, Cardenas J (1982) Nitrate reductase from Rhodopseudomonas sphaeroides. J Bacteriol 153:1091–1097Google Scholar
  16. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microb 65:4734–4740Google Scholar
  17. Kobayashi M, Kurata S (1978) The mass culture and cell utilization of photosynthetic bacteria. Process Biochem 13:27–29Google Scholar
  18. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035CrossRefGoogle Scholar
  19. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  20. Li G, Jiao R (1995) Nitrate assimilation of amcolatopsis mediterrandi U-32 and some properties of its nitrate reductase. Acta Microbiol Sinica 35:111–118Google Scholar
  21. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492CrossRefGoogle Scholar
  22. Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421CrossRefGoogle Scholar
  23. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4− ions by the Fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  24. Murawala P, Phadnis SM, Bhonde RR, Prasad BLV (2009) In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Colloid Surf B 73:224–228CrossRefGoogle Scholar
  25. Nand A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5:452–456CrossRefGoogle Scholar
  26. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13CrossRefGoogle Scholar
  27. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73:374–381CrossRefGoogle Scholar
  28. Philip D (2011) Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta A 78:327–331CrossRefGoogle Scholar
  29. Seghal Kiranb G, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148:221–225CrossRefGoogle Scholar
  30. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923CrossRefGoogle Scholar
  31. Yao ZY, Zhang ZM (1996) Phenotypic features and DNA–DNA homology analyses of some photosynthetic bacteria. Chin J Appl Environ Biol 2:84–89 (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hong-Juan Bai
    • 1
    • 2
  • Bin-Sheng Yang
    • 1
  • Chun-Jing Chai
    • 2
  • Guan-E. Yang
    • 3
  • Wan-Li Jia
    • 2
  • Zhi-Ben Yi
    • 2
  1. 1.Institute of Molecular ScienceShanxi UniversityTaiyuanChina
  2. 2.Chemical Industry and Ecology InstituteNorth University of ChinaTaiyuanChina
  3. 3.School of Pharmaceutical SciencesShanxi Medical UniversityTaiyuanChina

Personalised recommendations