Advertisement

World Journal of Microbiology and Biotechnology

, Volume 27, Issue 8, pp 1737–1746 | Cite as

Microalgae: a sustainable feed source for aquaculture

  • S. Hemaiswarya
  • R. Raja
  • R. Ravi Kumar
  • V. Ganesan
  • C. Anbazhagan
Review

Abstract

The need for nutritional sources safer than traditional animal products has renewed interest generally in plants and particularly in microalgae. Microalgae have diverse uses in aquaculture, their applications are mainly to provide nutrition and to enhance the colour of the flesh of salmonids. The larvae of molluscs, echinoderms and crustaceans as well as some fish larvae feed on microalgae. Several studies have confirmed that a live multi-specific, low bacterial and microalgal biomass remains essential for shellfish hatcheries. Major advances are expected from new production system, designs and operations from batch run open tanks to more sophisticated continuously-run and closed loop reactors. Currently, studies are underway to examine the cost-effectiveness of the on- and off-site microalgal production systems which can only be achieved by substantial scaling-up and improved quality control. In order to attain sustainability in the usage of microalgae, a systems-based approach is required which integrates different fields such as biotechnology, bioprocess and management procedures.

Keywords

Aquaculture Animal nutrition Microalgae Photo bioreactor Zooplankton 

Notes

Acknowledgments

The authors wish to express their sincere gratitude to Dr. Velusubramani, Senior Scientist, Refining Technology, The British Petroleum Company Ltd., Chicago, USA and Prof. R. Manivasakan, Indian Institute of Technology Madras for their critical review of the manuscript.

References

  1. Alam MS, Watanabe WO, Daniels HV (2009) Effect of different dietary protein and lipid levels on growth performance and body composition of juvenile southern flounder (Paralichthys lethostigma) reared in recirculating aquaculture system. J World Aquac Soc 40:513–521CrossRefGoogle Scholar
  2. Alvarez JS, Llamas AH, Galindo J, Fraga I, Garca T, Villarreal H (2007) Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti. Aquacul Res 38:689–695CrossRefGoogle Scholar
  3. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  4. Atalah E, Hernández Cruz CM, Izquierdo MS, Rosenlund G, Caballero MJ, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquacul 270:178–185CrossRefGoogle Scholar
  5. Baker RTM (2002) Canthaxanthin in aquafeed applications: is there any risk? Trends Food Sci Tech 12:240–243CrossRefGoogle Scholar
  6. Borowitzka MA (1997) Microalgae for aquaculture opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  7. Brown MR (2002) Nutritional value of microalgae for aquculture. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (eds) Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición. Acuícola. 3 al 6 de Septiembre del. ancún. Quintana Roo, MéxicoGoogle Scholar
  8. Carvalho AP, Meireles LA, Malcata XF (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506Google Scholar
  9. Catarina Guedes A, Meireles LA, Amaro HM, Xavier Malcata F (2010) Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. J Am Oil Chem Soc 87:791–801CrossRefGoogle Scholar
  10. Chakraborty RD, Chakraborty K, Radhakrishnan EV (2007) Variation in fatty acids composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. J Agric Food Chem 55:4043–4051CrossRefGoogle Scholar
  11. Dhont J, Van Stappen G (2003) Live feeds in marine aquaculture. Blackwell Science Ltd. pp 65–121Google Scholar
  12. Dunstan GH, Volkman JK, Barret SM, Garland CD (1993) Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83CrossRefGoogle Scholar
  13. Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquacul 272:717–722CrossRefGoogle Scholar
  14. FAO (Food and Agriculture Organization) (2002) Fishery Statistics: Commodities, vol 21. FAO, RomeGoogle Scholar
  15. Fujii K, Nakashima H, Hashidzume Y, Uchiyama T, Mishiro K, Kadota Y (2010) Potential use of the astaxanthin-producing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. J Appl Phycol 22:363–369CrossRefGoogle Scholar
  16. Gagneux-Moreaux S, Moreau C, Gonzalez JL, Cosson RP (2007) Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. J Appl Phycol 19:549–556CrossRefGoogle Scholar
  17. Gara B, Shields RJ, McEvoy L (1998) Feeding strategies to achieve correct metamorphosis of Atlantic halibut, Hippoglossus hippoglossus L., is using enriched Artemia. Aquacul Res 29:935–948CrossRefGoogle Scholar
  18. Gentsch E, Kreibich T, Hagen W, Barbara N (2009) Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feeding experiments. J Plankton Res 31:45–60CrossRefGoogle Scholar
  19. Gill I, Valivety R (1997) Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and application. Trends Biotechnol 15:401–409CrossRefGoogle Scholar
  20. Guerin M, Huntley ME, Olaizol M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–215CrossRefGoogle Scholar
  21. Hong HA, Duc HL, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835CrossRefGoogle Scholar
  22. Kang CD, Sim SJ (2008) Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnol Lett 30:441–444CrossRefGoogle Scholar
  23. Knauer J, Southgate PC (1999) A review of the nutritional requirements of bivalves and the development of alternative and artificial diets for bivalve aquaculture. Rev Fish Sci 7:241–280CrossRefGoogle Scholar
  24. Knuckey RM, Brown MR, Barrett SM, Hallegraeff GM (2002) Isolation of new nanoplanktonic diatom strains and their evaluation as diets for the juvenile Pacific oyster. Aquacul 211:253–274CrossRefGoogle Scholar
  25. Knuckey RM, Brown MR, René Robert R, Frampton MFD (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacul Eng 35:300–313CrossRefGoogle Scholar
  26. Laing I, Millican PF (1992) Indoor nursery cultivation of juvenile bivalve molluscs using diets of dried algae. Aquacul 102:231–243CrossRefGoogle Scholar
  27. Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical paper. In: Lavens P, Sorgeloos P (eds) Rome. pp 36–19Google Scholar
  28. León R, Inmaculada C, Emilio F (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga, Chlamydomonas reinhardtii. J Biotechnol 130:143–152CrossRefGoogle Scholar
  29. Li SS, Tsai HJ (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol 26:316–325CrossRefGoogle Scholar
  30. Liang H, Gong W-J, Chen Z-L, Tian J-Y, Qi L, Li G-B (2009) Effect of chemical preoxidation coupled with in-line coagulation as a pretreatment to ultrafi ltration for algae fouling control. Desalination Water Treat 9:241–245CrossRefGoogle Scholar
  31. López Elías JA, Voltolina D, Chavira Ortega CO, Rodríguez Rodríguez BB, Sáenz Gaxiola LM, Esquivel BC, Nieves M (2003) Mass production of microalgae in six commercial shrimp hatcheries of the Mexican northwest. Aquacultural Eng 29:155–164CrossRefGoogle Scholar
  32. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnol 18:160–167CrossRefGoogle Scholar
  33. Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquacul 133:295–309CrossRefGoogle Scholar
  34. Martínez-Fernández E, Paul C (2007) Southgate Use of tropical microalgae as food for larvae of the black-lip pearl oyster Pinctada margaritifera. Aquacul 263:220–226CrossRefGoogle Scholar
  35. Masuda R (2003) The critical role of docosahexaenoic acid in marine and terrestrial ecosystems: from bacteria to human behaviour. The big fish bang. In: Browman HI, Skiftesvik AB (eds) Proceedings of the 26th annual larval fish conference. Published by the Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway. ISBN 82-7461-059-8Google Scholar
  36. Meireles LA, Catarina Guedes A, Xavier Malcata F (2003) Increase of the yields of Eicosapentaenoic and Docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:5CrossRefGoogle Scholar
  37. Meireles LA, Catarina GA, Barbosa CR, Azevedo JL, Cunhab JP, Malcata FX (2008) On-line control of light intensity in a microalgal bioreactor using a novel automatic system. Enzyme Microbial Tech 42:554–559CrossRefGoogle Scholar
  38. Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534CrossRefGoogle Scholar
  39. Muller-Feuga A (2004) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, pp 352–364Google Scholar
  40. Muller-Feuga A, Moal J, Kaas R (2003) The microalgae of aquaculture. In aquaculture. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science Ltd. pp 253–299Google Scholar
  41. Yúfera M, Navarro N (1995) Population growth dynamic of the rotifer Brachionus plicatilis cultured in non-limiting food condition. Hydrobiologia 313/314, 399–405Google Scholar
  42. New MB, Wagner CV (2000) Freshwater prawn culture. Blackwell Science, Oxford, pp 1–11CrossRefGoogle Scholar
  43. Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacul Int 15:1–9CrossRefGoogle Scholar
  44. Pedro C, Fernández-Díaz JC (2001) Pilot evaluation of freeze-dried microalgae in the mass rearing of gilthead seabream (Sparus aurata) larvae. Aquacul 193:257–269CrossRefGoogle Scholar
  45. Ponis E, Robert R, Parisi G (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquacul 221:491–505CrossRefGoogle Scholar
  46. Ponis E, Probert I, Véron B, Mathieu M, Robert R (2006) New microalgae for the Pacific oyster Crassostrea gigas larvae. Aquacul 253:618–627CrossRefGoogle Scholar
  47. Pulz O (2001) Photobioreactors: production systems for phototropic microorganisms. Appl Microbiol Biotechnol 57:287–293CrossRefGoogle Scholar
  48. Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Adv Biochem Eng Biotechnol 59:123–151CrossRefGoogle Scholar
  49. Raja R (2003) Studies on Dunaliella salina (Dunal) Teod. with special reference to its anticancer properties. Ph.D., thesis, University of Madras, Chennai, IndiaGoogle Scholar
  50. Raja R (2009) Microalgae [Pourriel probable] a column in the IInd Chapter in ‘Un monde invisible’ edited by Laurence Bordenave, Publisher: Aubanel-La Martinière, La Martinière Group, ISBN: 978-2-7006-0670-6, France, pp 124–126 (French)Google Scholar
  51. Raja R, Hemaiswarya S (2010) Microalgae and immune potential a chapter in dietary components and immune function–prevention and treatment of disease and cancer. In: Watson RR, Zibadi S, Preedy VR (eds) Humana Press/Springer, ISBN: 978-1-60761-060-1, USA, pp 517–529Google Scholar
  52. Raja R, Anbazhagan C, Ganesan V, Rengasamy R (2004a) Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asi J Chem 16:1081–1088Google Scholar
  53. Raja R, Anbazhagan C, Lakshmi D, Rengasamy R (2004b) Nutritional studies on Dunaliella salina (Volvocales, Chlorophyta) under laboratory conditions. Seaweed Res Utili 26:127–146Google Scholar
  54. Raja R, Hemaiswarya S, Balasubramanyam D, Rengasamy R (2007a) PCR-identification of Dunaliella salina (Volvocales, Chlorophyceae) and its growth characteristics. Microbiol Res 162:168–176CrossRefGoogle Scholar
  55. Raja R, Hemaiswarya S, Balasubramanyam D, Rengasamy R (2007b) Protective effect of Dunaliella salina (Volvocales, Chlorophyta) on experimentally induced fibrosarcoma on wistar rats. Microbiol Res 162:177–184CrossRefGoogle Scholar
  56. Raja R, Hemaiswarya S, Rengasamy R (2007c) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523CrossRefGoogle Scholar
  57. Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Cri Rev Microbiol 34:77–88CrossRefGoogle Scholar
  58. Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd. pp 1–544Google Scholar
  59. Robert R, Parisi G, Rodolfi L, Poli BM, Tredici MR (2001) Use of fresh and preserved Tetraselmis suecica for feeding Crassostrea gigas larvae. Aquacul 192:333–346CrossRefGoogle Scholar
  60. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436CrossRefGoogle Scholar
  61. Rosenberry B (1991) World shrimp farming 1991. Aquaculture Digest, San DiegoGoogle Scholar
  62. Sanderson GW, Jolly SO (1994) The value of Phaffia yeast as a feed ingredient for Salmonid fish. Aquacul 124:193–200CrossRefGoogle Scholar
  63. Sargent JR, McEvoy LA, Bell JG (1997) Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquacul 155:117–128CrossRefGoogle Scholar
  64. Sayre RT, Wagner RE, Siripornadulsil S, Farias C (2001) Use of Chalmydomonas reinharditii and other transgenic algae in food or feed for delivery of antigensGoogle Scholar
  65. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  66. Tacon AJ (2003) Aquaculture production trends analysis. Review of the state of world aquaculture, Food and Agriculture Organisation of the United Nations, FAO Fisheries Circular No. 886, Rome, pp 5–29Google Scholar
  67. Volkman JK, Jeffrey SW, Nichols PD, Rodgers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240CrossRefGoogle Scholar
  68. Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294CrossRefGoogle Scholar
  69. Wikfors GH, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37:968–974CrossRefGoogle Scholar
  70. Yamasaki S, Tanabe K, Hirata H (1989) Efficiency of chilled and frozen Nannochloropsis sp. (marine Chlorella) for culture of rotifer. Mem Fac Fish Kagoshima Univ 38:77–82Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • S. Hemaiswarya
    • 1
  • R. Raja
    • 1
    • 2
  • R. Ravi Kumar
    • 2
  • V. Ganesan
    • 3
  • C. Anbazhagan
    • 4
  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  2. 2.Research and DevelopmentAquatic Energy LLCLake CharlesUSA
  3. 3.Acme ProGen Biotech (India) Private LimitedSalemIndia
  4. 4.Department of BotanyAnnamalai UniversityChidambaramIndia

Personalised recommendations