Phylotype diversity in a benthic cyanobacterial mat community on King George Island, maritime Antarctica

  • Cecilia Callejas
  • Paul R. Gill
  • Ana I. Catalán
  • Gastón Azziz
  • Susana Castro-Sowinski
  • Silvia Batista
Short Communication

Abstract

Cyanobacterial 16S ribosomal RNA gene diversity was examined in a benthic mat on Fildes Peninsula of King George Island (62º09′54.4′′S, 58º57′20.9′′W), maritime Antarctica. Environmental DNA was isolated from the mat, a clone library of PCR-amplified 16S rRNA gene fragments was prepared, and amplified ribosomal DNA restriction analysis (ARDRA) was done to assign clones to seven groups. Low cyanobacterial diversity in the mat was suggested in that 83% of the clones were represented by one ARDRA group. DNA sequences from this group had high similarity with 16S rRNA genes of Tychonema bourrellyi and T. bornetii isolates, whose geographic origins were southern Norway and Northern Ireland. Cyanobacterial morphotypes corresponding to Tychonema have not been reported in Antarctica, however, this morphotype was previously found at Ward Hunt Lake (83ºN), and in western Europe (52ºN). DNA sequences of three of the ARDRA groups had highest similarity with 16S rDNA sequences of the Tychonema group accounting for 9.4% of the clones. Sequences of the remaining three groups (7.6%) had highest similarity with 16S rRNA genes of uncultured cyanobacteria clones from benthic mats of Lake Fryxell and fresh meltwater on the McMurdo Ice Shelf.

Keywords

Antarctic environmental gradient 16S rRNA gene ARDRAs Fildes Peninsula Tychonema Oscillatoriales 

Supplementary material

11274_2010_578_MOESM1_ESM.doc (24 kb)
Figure 1S(DOC 24 kb)

References

  1. Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol 80:327–472Google Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Current protocols in molecular biology. John Wiley & Sons, New YorkGoogle Scholar
  3. Castenholz RW, Waterbury JB (1989) Group I Cyanobacteria. Preface. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol 3. Williams and Wilkins, Baltimore. pp 1710–1727Google Scholar
  4. Comte K, Sabacka M, Carre-Mlouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–377. doi:10.1111/j.1574-6941.2006.00257.x CrossRefGoogle Scholar
  5. Convey P (2003) Antarctic climate change and its influences on terrestrial ecosystems. Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Kluwer Academic Publishers, pp 1–20Google Scholar
  6. Flocco CG, Gomes NCM, Mac Cormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the maritime Antarctic. Environ Microbiol 11:700–714. doi:10.1111/j.1462-2920.2008.01858.x CrossRefGoogle Scholar
  7. Foong CP, Wong Vui Ling CM, González M (2010) Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci 4:263–273. doi:10.1016/j.polar.2010.05.010 CrossRefGoogle Scholar
  8. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey M (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491CrossRefGoogle Scholar
  9. Jungblut A-D, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity with in cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529. doi:10.1111/j.1462-2920.2005.00717.x CrossRefGoogle Scholar
  10. Komárek J (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica: a survey. Algol Stud 94:181–193Google Scholar
  11. Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21:349–375CrossRefGoogle Scholar
  12. Komárek J (2007) Phenotype diversity of the cyanobacterial genus Leptolyngbya in maritime Antarctica. Pol Polar Res 28:211–231Google Scholar
  13. Komárek J, Komárek O (2003) Diversity of cyanobacteria in seepages of King George Island, maritime Antarctica. In: Antarctic Biology in a Global Context. Backhuys Publishers, Leiden, The Netherlands. VIIIth SCAR International Biology Symposium, ISBN 90578079X, pp 244–250Google Scholar
  14. Nadeau TL, Howard-Williams C, Castenholz R (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J Phycol 37:650–654. doi:10.1046/j.1529-8817.2001.037004650.x CrossRefGoogle Scholar
  15. Nübel U, García-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332Google Scholar
  16. Rudi K, Skulberg OM, Jakobsen KS (1998) Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180:3453–3461Google Scholar
  17. Strunecký O, Elster J, Komárek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol 33:1419–1428. doi:10.1007/s00300-010-0834-8 CrossRefGoogle Scholar
  18. Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Liu Y, Day JG (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595. doi:10.1099/ijs.0.01834-0 CrossRefGoogle Scholar
  19. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092 CrossRefGoogle Scholar
  20. Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169. doi:10.1128/AEM.69.9.5157-5169.2003 CrossRefGoogle Scholar
  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  22. Villeneuve V, Vincent WF, Komárek J (2001) Structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. N Hedwig Beih 123:199–223Google Scholar
  23. Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150. doi:10.1016/S0929-1393(99)00029-3 CrossRefGoogle Scholar
  24. Xiao X, Li M, You Z, Wang F (2007) Bacterial communities inside and in the vicinity of the Chinese Great Wall station, King George Island, Antarctica. Antarct Sci 19:11–16. doi:10.1017/S095410200700003.x CrossRefGoogle Scholar
  25. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematodes communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451. doi:10.1111/j.1574-6941.2006.00200.x Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cecilia Callejas
    • 1
    • 2
  • Paul R. Gill
    • 1
    • 2
  • Ana I. Catalán
    • 1
  • Gastón Azziz
    • 1
  • Susana Castro-Sowinski
    • 1
    • 3
  • Silvia Batista
    • 1
  1. 1.Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (MEC), Unidad Asociada a Facultad de CienciasMinisterio de Educación y CulturaMontevideoUruguay
  2. 2.Laboratorio de Tecnología Molecular, Facultad de CienciasUdelaRMontevideoUruguay
  3. 3.Sección Bioquímica, Facultad de CienciasUdelaRMontevideoUruguay

Personalised recommendations