Hypolipidemic and antioxidant properties of Ganoderma lucidum (Leyss:Fr) Karst used as a dietary supplement

  • Rosália Rubel
  • Herta S. Dalla Santa
  • Luiz Cláudio Fernandes
  • Sandro J. R. Bonatto
  • Sérgio Bello
  • Bonald C. Figueiredo
  • José Hermenio C. Lima Filho
  • Cid Aimbiré M. Santos
  • Carlos Ricardo Soccol
Original Paper

Abstract

In this study, the hypolipidemic and antioxidant properties of Ganoderma lucidum CG 144, a medicinal mushroom cultivated on wet wheat grains by solid-state fermentation, were investigated followed dietary supplementation. Basal chow was supplemented with 85, 50, or 10% of G. lucidum CG 144 dried spawn, resulting in G85, G50, and G10 diets, respectively, and fed to normocholesterolemic and induced-hypercholesterolemic mice. The G85 diet triggered significant loss of body weight compared with the G50 and G10 diets (P < 0.01). In the normocholesterolemic mice, regular consumption of high concentrations (G85 and G50 diets) of dried spawn led to significant changes in the plasma lipid concentrations (P < 0.05). Although there were no significant changes in the plasma cholesterol concentrations, the G85 and G50 diets decreased the low-density-lipoprotein (LDL) cholesterol levels by 71 and 98%, respectively, and increased the high-density-lipoprotein (HDL) cholesterol levels by 80 and 86%, respectively. Further, the plasma triacylglycerol levels decreased by 32.5 and 42% with the G85 and G50 diets, respectively. The G10 diet did not alter the plasma lipid profile in the normocholesterolemic mice (P > 0.05) but significantly decreased the cholesterol concentrations (P < 0.001) in the induced-hypercholesterolemic mice. Peritoneal macrophages from the induced-hypercholesterolemic mice fed the G10 diet produced lower nitric oxide than the controls (P < 0.05).

Keywords

Ganoderma lucidum Medicinal mushroom Cholesterol Nitric oxide Antioxidant 

References

  1. Afrose S, Hossain MS, Maki T, Tsujii H (2009) Karaya root saponin exerts a hypocholesterolemic response in rats fed a high-cholesterol diet. Nutr Res 29(5):350–354. doi:10.1016/j.nutres.2009.05.008 CrossRefGoogle Scholar
  2. Association of Official Analytical Chemists (2000) Official methods of analysis of AOAC international, 17th edn, GaithersburgGoogle Scholar
  3. Bakker JL, Ijzerman RG, Teerlink T, Westerhoff HV, Gans RO, Heine RJ (2000) Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and β-cell failure? Atherosclerosis 148(1):17–21. doi:10.1016/S0021-9150(99)00329-9 CrossRefGoogle Scholar
  4. Barter P, Gotto AM, Phil D, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJ, Bittner V, Fruchart JC (2007) HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. New Engl J Med 357(13):1301–1310. doi:10.1056/NEJMoa064278 CrossRefGoogle Scholar
  5. Berger A, Rein D, Kratky E, Monnard I, Hajjaj H, Meirim I, Piguet-Welsch C, Hauser J, Mace K, Niederberger P (2004) Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids Health Dis 3:2. doi:10.1186/1476-511X-3-2 CrossRefGoogle Scholar
  6. Bonatto SJ, Folador A, Aikawa J, Yamazaki RK, Pizatto N, Oliveira HHP, Vecchi R, Curi R, Calder PC, Fernandes LC (2004) Lifelong exposure to dietary fish oil alters macrophage responses in Walker 256 tumor-bearing rats. Cell Immunol 231(1–2):56–62. doi:10.1016/j.cellimm.2004.12.001 CrossRefGoogle Scholar
  7. Erhardt JG, Lim SS, Bode JC, Bode C (1997) A diet rich in fat and poor in dietary fiber increases the in vitro formation of reactive oxygen species in human feces. J Nutr 127(5):706–709Google Scholar
  8. Fukushima M, Nakano M, Morii Y, Ohashi T, Fujiwara Y, Sonoyama K (2000) Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J Nutr 130(9):2151–2156Google Scholar
  9. Ghosh J, Mishra TK, Rao YN, Aggarwal SK (2006) Oxidised LDL, HDL cholesterol, LDL cholesterol levels in patients of coronary artery disease. Indian J Clin Biochem 21(1):181–184. doi:10.1007/BF02913092 CrossRefGoogle Scholar
  10. Hajjaj H, Macé C, Roberts M, Niederberger P, Fay LB (2005) Effect of 26-Oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Appl Environ Microb 71(7):3653–3658. doi:10.1128/AEM.71.7.3653-3658.2005 CrossRefGoogle Scholar
  11. Kabir Y, Kimura S, Tamura T (1988) Dietary effect of Ganoderma lucidum mushroom on blood pressure and lipid levels in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol (Tokyo) 34(4):433–438Google Scholar
  12. Klupp NL, Chang D, Hawke F, Kiat H, Grant SJ, Bensoussan A (2008) Ganoderma lucidum for the treatment of cardiovascular risk factors. Cochrane Db Syst Rev 3. doi:10.1002/14651858.CD007259
  13. Liu S, Adcock IM, Old RW, Barnes PJ, Evans TW (1993) Lipopolysaccharide treatment in vivo induces widespread tissue expression of inducible nitric oxide synthase mRNA. Biochem Biophys Res Commun 196(3):1208–1213. doi:10.1006/bbrc.1993.2380 CrossRefGoogle Scholar
  14. Madhavi N, Das VN (1994) Effects of n-3 and n-6 fatty acids on survival of vincristine sensitive and resistant human cervical carcinoma cells, in vitro. Cancer Lett 84(1):31–41CrossRefGoogle Scholar
  15. Matos FJA (1988) Introdução à fitoquímica experimental. Universidade Federal do Ceará, Fortaleza, BrasilGoogle Scholar
  16. Minnich A, Zilversmit DB (1989) Impaired triacylglycerol catabolism in hypertriglyceridemia of the diabetic, cholesterol-fed rabbit: a possible mechanism for protection from atherosclerosis. Biochim Biophys Acta 1002(3):324–332. doi:10.1016/0005-2760(89)90346-9 Google Scholar
  17. Napoli C, Ignarro LJ (2009) Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res 32(8):1103–1108. doi:10.1007/s12272-009-1801-1 CrossRefGoogle Scholar
  18. Pahan K (2006) Lipid-lowering drugs. Cell Mol Life Sci 63(10):1165–1178. doi:10.1007/s00018-005-5406-7 CrossRefGoogle Scholar
  19. Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Meth 46(2):211–226. doi:10.1016/0022-1759(81)90138-1 CrossRefGoogle Scholar
  20. Pizato N, Bonatto S, Piconcelli M, de Souza LM, Sassaki GL, Naviwaiko K, Nunes EA, Curi R, Calder PC, Fernandes LC (2006) Fish oil alters T-lymphocyte proliferation and macrophage responses in Walker 256 tumor-bearing rats. Nutrition 22(4):425–432. doi:10.1016/j.nut.2005.11.001 CrossRefGoogle Scholar
  21. Rubel R, Dalla Santa HS, Fernandes LC, Lima Filho JHC, Figueiredo BC, Di Bernardi R, Moreno NA, Leifa F, Soccol CR (2008) High immunomodulatory and preventive effects against sarcoma 180 in mice fed with Ling Zhi or Reishi mushroom Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) mycelium. Int J Med Mushr 10(1):37–48. doi:10.1615/IntJMedMushr.v10.i1.50 CrossRefGoogle Scholar
  22. Rubel R, Dalla Santa HS, Bonatto SJR, Bello S, Fernandes LC, Di Bernardi R, Gern J, Santos CAM, Soccol CR (2010) Medicinal mushroom Ganoderma lucidum (Leyss:FR) Karst. triggers immunomodulatory effects and reduces nitric oxide synthesis in mice. J Med Food 13(1):142–148. doi:10.1089/jmf.2008.0307 CrossRefGoogle Scholar
  23. Seitz LM, Sauer DB, Burroughs R, Mohr HE, Hubbard ID (1979) Ergosterol as a measure of fungal growth. Phytopathology 69(11):1202–1203CrossRefGoogle Scholar
  24. Soccol CR, Vandenberghe LPS (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13(2–3):205–218. doi:10.1016/s1369-703x(02)00133-x CrossRefGoogle Scholar
  25. Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82(22):7738–7742CrossRefGoogle Scholar
  26. Tang YJ, Zhong JJ (2002) Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Tech 31(1–2):20–28. doi:10.1016/S0141-0229(02)00066-2 CrossRefGoogle Scholar
  27. Wachtel-Galor S, Tomlinson B, Benzie IF (2004) Ganoderma lucidum (Lingzhi), a chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr 91(2):171–173. doi:10.1079/BJN20041039 CrossRefGoogle Scholar
  28. Wagner H, Bladt S, Zgainski EM (1984) Plant drug analysis. Springer, BerlinGoogle Scholar
  29. Wasser SP (2005) Reishi or Ling Zhi (Ganoderma lucidum). In: Encyclopedia of dietary supplements. Marcel Dekker, New York, pp 603–622. doi:10.1081/E-EDS-120022119
  30. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19(1):65–96Google Scholar
  31. Wilke MS, French MA, Goh YK, Ryan EA, Jones PJ, Clandinin MT (2009) Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 52(8):1628–1637. doi:10.1007/s00125-009-1405-9 CrossRefGoogle Scholar
  32. Woo CW, Man RY, Siow YL, Choy PC, Wan EW, Lau CS OK (2005) Ganoderma lucidum inhibits inducible nitric oxide synthase expression in macrophages. Mol Cell Biochem 275(1–2):165–171. doi:10.1007/s11010-005-1352-9 CrossRefGoogle Scholar
  33. Zhang HN, Lin ZB (2004) Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmacol Sin 25(2):191–195Google Scholar
  34. Zhou X, Lin J, Yin Y, Zhao J, Sun X, Tang K (2007) Ganodermataceae: natural products and their related pharmacological functions. Am J Chin Med 35(4):559–574. doi:10.1142/S0192415X07005065 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Rosália Rubel
    • 1
  • Herta S. Dalla Santa
    • 1
  • Luiz Cláudio Fernandes
    • 2
  • Sandro J. R. Bonatto
    • 2
  • Sérgio Bello
    • 2
  • Bonald C. Figueiredo
    • 3
  • José Hermenio C. Lima Filho
    • 4
  • Cid Aimbiré M. Santos
    • 5
  • Carlos Ricardo Soccol
    • 1
    • 6
  1. 1.Bioprocess Engineering and Biotechnology DivisionFederal University of Paraná (UFPR)CuritibaBrazil
  2. 2.Department of PhysiologyUFPRCuritibaBrazil
  3. 3.Pelé Pequeno Príncipe Research InstituteCuritibaBrazil
  4. 4.Department of Medical PathologyUFPRCuritibaBrazil
  5. 5.Pharmacognosie Laboratory, Department of PharmacyUFPRCuritibaBrazil
  6. 6.Divisão de Engenharia de Bioprocessos & Biotecnologia Industrial, Departamento de Engenharia Química, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations