The effect of Baccharis glutinosa extract on the growth of mycotoxigenic fungi and fumonisin B1 and aflatoxin B1 production

  • Ema Carina Rosas-Burgos
  • Mario Onofre Cortez-Rocha
  • Maribel Plascencia-Jatomea
  • Francisco Javier Cinco-Moroyoqui
  • Ramón Enrique Robles-Zepeda
  • Jaime López-Cervantes
  • Dalia Isabel Sánchez-Machado
  • Fernando Lares-Villa
Original Paper

Abstract

The aim of this study was to evaluate the effect of Baccharis glutinosa isolated extract on the growth of Aspergillus flavus and Aspergillus parasiticus, and their aflatoxin B1 production; and growth of Fusarium verticillioides, and their fumonisin B1 production. The three fungi were exposed to an antifungal fraction, designated as fraction F6-1, isolated from B. glutinosa by methanolic extraction followed by silica gel chromatography. The growth of the fungi was evaluated in kinetics of radial extension growth, kinetics of spores germination, length and diameter of hyphae, spores diameter, as well as in aflatoxin B1 and fumonisin B1 production. Fraction F6-1 caused radial growth inhibition of the three fungi mainly F. verticillioides. Spores germination of A. flavus and A. parasiticus was delayed in the early stage of the incubation time, although they completely germinated at 27 h. In contrast, spore germination of F. verticillioides was inhibited 87.7% up to 96 h. The lengths and diameters of hyphae, and spore diameters of the three fungi, were significantly smaller in comparison with those of the controls, and several morphological alterations were observed. Concerning aflatoxin B1 and fumonisin B1, fraction F6-1 did not show any inhibition effect at the concentration used. Fraction F6-1 was able to significantly inhibit the development of the three fungi, mainly F. verticillioides. The strong inhibitory effect of F6-1 on hyphae and spores suggests that it interacted with the fungi cell walls, which caused severe deformities. Nevertheless, this fraction was unable in inhibiting mycotoxin production from the three fungi at the concentration tested.

Keywords

Baccharis glutinosa Antifungal activity Aflatoxin Fumonisin Phytopathogenic fungi 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beekrum S, Govinden G, Padayachee T, Odhav B (2003) Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Addit Contam 20:490–493. doi: 10.1080/0265203031000098678 CrossRefGoogle Scholar
  2. Bullerman LB (1974) Inhibition of aflatoxin production by cinnamon. J Food Sci 39:1163–1165. doi: 10.1111/j.1365-2621.1974.tb07344.x CrossRefGoogle Scholar
  3. Bullerman LB, Lieu FY, Seier SA (1977) Inhibition of growth and aflatoxin production by cinnamon and clove oils. Cinnamic aldehyde and eugenol. J Food Sci 42:1107–1109. doi: 10.1111/j.1365-2621.1977.tb12677.x CrossRefGoogle Scholar
  4. Castellá G, Bragulat MR, Cabañes FJ (1999) Fumonisin production by Fusarium species isolated from cereals and feeds in Spain. J Food Prot 62:811–813Google Scholar
  5. Constable PD, Smith GW, Rottinghaus GE, Hascheck WM (2000) Ingestion of fumonisin B1-containing culture materials decreases cardiac contractility and mechanical efficiency in swine. Toxicol Appl Pharmacol 162:151–160. doi: 10.1006/tap.1999.8831 CrossRefGoogle Scholar
  6. Cotoras M, García C, Lagos C, Folch C, Mendoza L (2001) Antifungal activity on Botrytis cinerea of flavonoids and diterpenoids isolated from the surface of Pseudognaphalium spp. Bol Soc Ch Qca 46:433–440. doi: 10.4067/S0366-16442001000400007 Google Scholar
  7. Cox PW, Paul GC, Thomas CR (1998) Image analysis of morphology of filamentous micro-organisms. Microbiology 144:817–827. doi: 10.1099/00221287-144-4-817 CrossRefGoogle Scholar
  8. D′Mello JPF, Macdonald AMC, Postel D, Dijksma WTP, Dujardin A, Placinta CM (1998) Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Path 104:741–751. doi: 10.1023/A:1008621505708 CrossRefGoogle Scholar
  9. DiSalvo AF (1974) Antifungal properties of a plant extract I. Source and spectrum of antimicrobial activity. Mycopath et Mycol Appl 54:215–219. doi: 10.1007/BF02050042 CrossRefGoogle Scholar
  10. Dorner JW, Cole RJ, Diener UL (1984) The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxins and cyclopiazonic acid. Mycopathologia 87:13–15. doi: 10.1007/BF00436617 CrossRefGoogle Scholar
  11. Eaton DL, Groopman JD (1994) The toxicology of aflatoxins. Academic Press, New YorkGoogle Scholar
  12. Echlin P (2009) Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Ed. Springer, New YorkGoogle Scholar
  13. Etcheverry M, Torres A, Ramírez ML, Chulze S, Magan N (2002) In vitro control of growth and fumonisin production by Fusarium verticillioides and F. proliferatum using antioxidants under different water availability and temperature regimes. J App Microb 92:624–632. doi: 10.1046/j.1365-2672.2002.01566.x CrossRefGoogle Scholar
  14. Fandohan P, Gbenol JD, Gnonlonfin B, Hell K, Marasas WFO, Wingfield MJ (2004) Effect of essential oils on the growth of Fusarium verticillioides and fumonisina contamination in corn. J Agric Food Chem 52:6824–6829. doi: 10.1021/jf040043p CrossRefGoogle Scholar
  15. Harris SD (1999) Morphogenesis is coordinates with nuclear division in germinating Aspergillus nidulans conidiospores. Microbiology 145:2747–2756Google Scholar
  16. IARC (2002) International agency for research on cancer. Monogr IARC 82:301Google Scholar
  17. Jobling J (2000) Essential oils: a new idea for postharvest disease control. Good Fruit Veg Mag 11:50Google Scholar
  18. Kamilla L, Mansor SM, Ramanathan S, Sasidharan I (2009) Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger. Microsc Microanal 15:366–372. doi: 10.1017/S1431927609090783 CrossRefGoogle Scholar
  19. Larralde CC, López LF, Viniegra GG (1997) Morphometric evaluation of the specific growth rate of Aspergillus niger grown in agar plates at high glucose levels. Biotechnol Bioeng 56:287–294. doi: 10.1002/(SICI)1097-0290(19971105)56:3<287:AID-BIT6>3.0.CO;2-F CrossRefGoogle Scholar
  20. López AG, Theumer MG, Zygadlo JA, Rubinstein HR (2004) Aromatic plant essential oils activity on Fusarium verticillioides fumonisina B1 production in corn grain. Mycophatologia 158:343–349CrossRefGoogle Scholar
  21. Mahoney N, Molyneux RJ, Campbell BC (2000) Regulation of aflatoxin production by naphthoquinones on walnut (Juglans regia). J Agric Food Chem 48:4418–4421. doi: 10.1021/jf0003449 CrossRefGoogle Scholar
  22. Marasas WFO, Kriek NP, Fincham JE, van Rensburg SJ (1984) Primary liver cancer and esophageal basal-cell hyperplasia in rats caused by Fusarium moniliforme. Int J Cancer 34:383–387. doi: 10.1002/ijc.2910340315 CrossRefGoogle Scholar
  23. Moreno-Salazar SF, Robles-Zepeda RE, Johnson DE (2008) Plant folk medicines for gastrointestinal disorders among the main tribes of Sonora, México. Fitoterapia 79:132–141. doi: 10.1016/j.fitote.2007.07.009 CrossRefGoogle Scholar
  24. Nelson PE (1992) Taxonomy and biology of Fusarium moniliforme. Mycopathology 117:29–36. doi: 10.1007/BF00497276 CrossRefGoogle Scholar
  25. Nichols TE (1983) Economic impact of aflatoxins in corn. In: Diener L, Asquith R, Dickens J (eds) Aflatoxin and Aspergillus flavus in corn. Alabama Agricultural Experimental Station, Auburn, AL, pp 67–71Google Scholar
  26. NOM-188-SSA1-2002 (2002) Norma Oficial Mexicana NOM-188-SSA1-2002—Productos y servicios. Control de aflatoxinas en cereales para consumo humano y animal. Especificaciones SanitariasGoogle Scholar
  27. Norton RA (1997) Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus. Postharv Pathol Mycotox 87:814–821Google Scholar
  28. Paul GC, Kent CA, Thomas CR (1993) Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol Bioeng 42:11–23. doi: 10.1002/bit.260420103 CrossRefGoogle Scholar
  29. Plascencia-Jatomea M, Viniegra G, Olayo R, Castillo-Ortega MM, Shirai K (2003) Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromol Biosci 3:582–586. doi: 10.1002/mabi.200350024 CrossRefGoogle Scholar
  30. Razzaghi-Abyaneh M, Allameh A, Tiraihi T, Shams-Ghahfarokhi M, Ghorbanian M (2005) Morphological alterations in toxigenic Aspergillus parasiticus exposed to neem (Azadirachta indica) leaf and seed aqueous extracts. Mycopathologia 159:565–570. doi: 10.1007/s11046-005-4332-4 CrossRefGoogle Scholar
  31. Rosas-Burgos EC, Cortez-Rocha MO, Cinco-Moroyoqui FJ, Robles-Zepeda RE, López-Cervantes J, Sánchez-Machado DI, Lares-Villa F (2009) Antifungal activity in vitro of Baccharis glutinosa and Ambrosia confertiflora extracts on Aspergillus flavus, Aspergillus parasiticus and Fusarium verticillioides. World J Microbiol Biotechnol 25:2257–2261. doi: 10.1007/s11274-009-0116-1 CrossRefGoogle Scholar
  32. Sánchez E, Heredia N, García S (2005) Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int J Food Microb 98:271–279. doi: 10.1016/j.ijfoodmicro.2004.07.009 CrossRefGoogle Scholar
  33. SAS Institute (2005) PROC user’s manual, 8th version. SAS Institute, Cary, NCGoogle Scholar
  34. Shephard GS, Sydenham EW, Thiel PG, Gelderblom WCA (1990) Quantitative determination of fumonisin B1 and B2 by high performance liquid chromatography with fluorescence detection. J Liq. Chromatogr 13:2077–2087. doi: 10.1080/01483919008049014 CrossRefGoogle Scholar
  35. Suárez-Jiménez GM, Cortez-Rocha MO, Rosas-Burgos EC, Burgos-Hernández A, Plascencia-Jatomea M, Cinco-Moroyoqui FJ (2007) Antifungal activity of plant methanolic extracts against Fusarium verticillioides (Sacc.) Nirenb, and fumonisin B1 production. Rev Mex Fitopatol 25:134–142Google Scholar
  36. Tequida-Meneses M, Cortez-Rocha M, Rosas-Burgos EC, López-Sandoval S, Corrales-Maldonado C (2002) Efecto de extractos alcohólicos de plantas silvestres sobre la inhibición de crecimiento de Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme y Fusarium poae. Rev Iberoam de Micol 19:84–88Google Scholar
  37. Velluti A, Sanchis V, Ramos AJ, Egido J, Marin S (2003) Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int J Food Microbiol 89:145–154. doi: 10.1016/S0168-1605(03)00116-8 CrossRefGoogle Scholar
  38. Vicam LP (1999) Aflatest® instruction manual. Watertown, MA, USAGoogle Scholar
  39. Wedge DE, Smith BJ (2006) Discovery and evaluation of natural product-based fungicides for disease control of small fruits. In: Inderjit S, Mukerji KG (eds) Allelochemicals: biological control of plant pathogens and diseases. Dordrecht, Holland, pp 1–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ema Carina Rosas-Burgos
    • 1
    • 3
  • Mario Onofre Cortez-Rocha
    • 1
  • Maribel Plascencia-Jatomea
    • 1
  • Francisco Javier Cinco-Moroyoqui
    • 1
  • Ramón Enrique Robles-Zepeda
    • 2
  • Jaime López-Cervantes
    • 3
  • Dalia Isabel Sánchez-Machado
    • 3
  • Fernando Lares-Villa
    • 3
  1. 1.Departamento de Investigación y Posgrado en AlimentosUniversidad de Sonora, Unidad Regional CentroHermosilloMéxico
  2. 2.Departamento de Ciencias Químico BiológicasUniversidad de SonoraHermosilloMéxico
  3. 3.Departamento de Biotecnología y Ciencias AlimentariasInstituto Tecnológico de SonoraCiudad ObregónMéxico

Personalised recommendations