Biodegradation of methyl tert-butyl ether by newly identified soil microorganisms in a simple mineral solution

  • Maria José Barberà
  • Estíbaliz Mateo
  • Rasa Monkaityte
  • Magda Constantí
Original Paper


Methyl tert-butyl ether (MTBE) is a widely used fuel ether, which has become a soil and water contaminant. In this study, 12 microbial strains were isolated from gasoline-contaminated soils and selected because of their capacity to grow in MTBE. The strains were identified by 16S/ITS rDNA gene sequencing and screened for their ability to consume MTBE aerobically in a simple mineral solution. Solid phase microoextraction and gas chromatography were used to detect MTBE degradation. High levels of MTBE biodegradation were obtained using resting cells of the bacteria Achromobacter xylosoxidans MCM1/1 (78%), Enterobacter cloacae MCM2/1 (50%), and Ochrobactrum anthropi MCM5/1 (52%) and the fungus Exophiala dermatitidis MCM3/4 (14%). Our phylogenetic analysis clearly shows that bacterial MTBE biodegraders belong to the clade of Proteobacteria. For further insight, MTBE-degrader strains were profiled by denaturing gel gradient electrophoresis (DGGE) of PCR-amplified 16S rRNA gene sequences. This approach could be used to analyse microbial community dynamics in bioremediation processes.


MTBE biodegradation Resting cells Achromobacter xylosoxidans Enterobacter cloacae Ochrobactrum anthropi Exophiala dermatitidis 



This study was supported by a project grant from the Spanish Ministerio de Medio Ambiente. We are grateful to Nuria Forns and Josep Matías for their help in selecting and identifying the microorganisms, to Iñaki Ruiz-Trillo for the phylogenetic analysis, Josep M. Borràs for his chromatographic assistance and Josep M. Mateo for his statistical suggestions. Rasa Monkaityte was a recipient of a PhD grant from the Generalitat de Catalunya, Spain

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E et al (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57(5):401–412CrossRefGoogle Scholar
  2. Awong-Taylor J, Craven K, Griffiths L, Bass C, Muscarella M (2007) Comparison of biochemical and molecular methods for the identification of bacterial isolates associated with failed loggerhead sea turtle eggs. J Appl Microbiol 104(5):1244–1251CrossRefGoogle Scholar
  3. Barceló D (2007) Fuel oxygenates. Springer cop, Berlin, New YorkCrossRefGoogle Scholar
  4. Bosshard PP, Zbinden R, Abels S, Böddinghaus B, Altwegg M, Böttger (2006) 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44(4):1359–1366CrossRefGoogle Scholar
  5. Chen J, Chen D, Zhong W, Zhang J, Chen X (2007) Biodegradation of methyl tert-butyl ether by Methylibium petroleiphilum in poor nutrition solution. Environ Sci Health A Tox Hazard Subst Environ Eng 42(14):2123–2129Google Scholar
  6. Constantí M, Giralt J, Bordons A (1996) Degradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture. Enzyme Microb Technol 19:214–219CrossRefGoogle Scholar
  7. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-Defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62(2):340–346Google Scholar
  8. François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether, other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68(6):2754–2762CrossRefGoogle Scholar
  9. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704CrossRefGoogle Scholar
  10. Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792Google Scholar
  11. Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067Google Scholar
  12. Iwashita S, Callahan TP, Haydu J, Wood TK (2004) Mesophilic aerobic degradation of a metal lubricant by a biological consortium. Appl Microbiol Biotechnol 65:620–626CrossRefGoogle Scholar
  13. Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC et al (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945CrossRefGoogle Scholar
  14. Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113:305–331CrossRefGoogle Scholar
  15. Lacayo-Romero M, Quillaguaman J, van Bavel B, Mattiasson B (2005) A toxaphene-degrading bacterium related to Enterobacter cloacae strain D1 isolated from aged contaminated soil in Nicaragua. Syst Appl Microbiol 28(7):632–639CrossRefGoogle Scholar
  16. Lee EH, Cho KS (2009) Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene and xylene by Rhodococcus sp. J Hazard Mater 167(1–3):669–674CrossRefGoogle Scholar
  17. Liu H, Yan J, Wang Q, Karlson UG, Zou G, Yuan Z (2009) Biodegradation of methyl tert-butyl ether by enriched bacterial culture. Curr Microbiol 59:30–34CrossRefGoogle Scholar
  18. Magaña-Reyes M, Morales M, Revah S (2005) Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani. Biotechnol Lett 27:1797–1801CrossRefGoogle Scholar
  19. Maidak BL, Cole JR, Parker CT Jr (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173CrossRefGoogle Scholar
  20. Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CP (1997) Biodegradation of methyl tert-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47(1):69–72CrossRefGoogle Scholar
  21. Müller RH, Jorks S, Kleinsteuber S, Babel W (1998) Degradation of various chlorophenols under alkaline conditions by Gram-negative bacteria closely related to Ochrobactrum anthropi. J Basic Microb 38(4):269–281CrossRefGoogle Scholar
  22. Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421CrossRefGoogle Scholar
  23. Muñoz-Castellanos LN, Torres-Muñoz JV, Keer-Rendon A, Manzanares-Papayanopoulos LI, Nevarez-Moorillon GV (2006) Aerobic biodegradation of methyl tert-butyl ether (MTBE) by pure bacterial cultures isolated from contaminated soil. World J Microbiol Biotechnol 22(8):851–855CrossRefGoogle Scholar
  24. Olaniran AO, Mfumo NH, Pillay D, Pillay B (2006) Synergistic utilization of dichloroethylene as sole carbon source bacterial consortia isolated from contaminated sites in Africa. Biotechnol Bioprocess Eng 11(3):205–210CrossRefGoogle Scholar
  25. Peterson GL (1979) Review of the folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100:201–220CrossRefGoogle Scholar
  26. Purswani J, Pozo C, Rodríguez-Díaz M, González-López J (2008) Selection and identification of bacterial strains with methyl-tert-butyl ether, ethyl-tert-butyl ether, and tert-amyl methyl ether degrading capacities. Environ Toxicol Chem 27(11):2296–2303CrossRefGoogle Scholar
  27. Rosell M, Lacorte S, Ginebreda A, Barcelo D (2003) Simultaneous determination of methyl tert-butyl ether and its degradation products, other gasoline oxygenates and benzene, toluene, ethylbenzene and xylenes in Catalonian groundwater by purge-and-trap-gas chromatography-mass spectrometry. J Chromatog A 995:171–184CrossRefGoogle Scholar
  28. Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550CrossRefGoogle Scholar
  29. Squillace PJ, Zogorski JS, Wilber WG, Price CV (1996) Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993–1994. Environ Sci Technol 30:1721–1730CrossRefGoogle Scholar
  30. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690CrossRefGoogle Scholar
  31. Streger SH, Vainberg S, Dong HL, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579CrossRefGoogle Scholar
  32. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  33. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  34. Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806CrossRefGoogle Scholar
  35. Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 74(5):1092–1102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria José Barberà
    • 1
  • Estíbaliz Mateo
    • 1
  • Rasa Monkaityte
    • 1
  • Magda Constantí
    • 1
  1. 1.Departament d′Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations