World Journal of Microbiology and Biotechnology

, Volume 26, Issue 9, pp 1721–1726 | Cite as

Evaluation of the denaturing gradient gel electrophoresis-apparatus as a parameter influencing soil microbial community fingerprinting

  • J. Ascher
  • M. T. Ceccherini
  • A. Chroňáková
  • J. Jirout
  • F. Borgogni
  • D. Elhottová
  • M. Šimek
  • G. Pietramellara
Short Communication

Abstract

We compared two denaturing gradient gel electrophoresis (DGGE) systems—DCode (Biorad, Hercules, CA, USA) and PhorU (Ingeny, Leiden, NL), performing community level 16S and 18S rRNA gene fragment-PCR-DGGE with total DNA extracted from upland pasture soil used for outdoor cattle husbandry. The methodological evaluation of the DGGE apparatus as parameter influencing DGGE fingerprinting, based on cluster analysis of soil bacterial and fungal community fingerprints, was made in terms of the resulting information about microbial community structures and their response to different degrees of cattle impact. Although the comparative DGGE analysis with different DGGE systems provided similar clustering of microbial community structures in correlation with the degree of cattle impact, our results suggest the DGGE system to be a factor influencing DGGE analysis. To our knowledge this is the first attempt to investigate the hypothetical impact of the DGGE system due to different technical characteristics, recommending the use of one and the same DGGE apparatus throughout an experiment, if the monitoring of microbial community structures requires multiple gel-to-gel analysis.

Keywords

Cattle impact DGGE DGGE interfering factors Soil microbial community fingerprinting 

Notes

Acknowledgments

The study was realized within the scientific cooperation between the Consiglio Nazionale di Ricerca, Italy, and the Academy of Sciences of the Czech Republic. We are grateful to the Ente Cassa di Risparmio di Firenze, the Ministry of Education of the Czech Republic (LC06066) and the Grant Agency of the Academy of Sciences of the Czech Republic (IAA600660605) for financial support. The authors are grateful for useful advice and suggestions from Dr. F. Valori and the anonymous referees.

References

  1. Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868CrossRefGoogle Scholar
  2. Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009a) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359CrossRefGoogle Scholar
  3. Ascher J, Ceccherini MT, Pantani OL, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009b) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 42:176–181CrossRefGoogle Scholar
  4. Brons JK, van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Appl Environ Microbiol 74:2717–2727CrossRefGoogle Scholar
  5. Carrigg C, Rice O, Kavanagh S, Collins G, O’Flaherty V (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol 77:955–964CrossRefGoogle Scholar
  6. Ceccherini MT, Ascher J, Agnelli A, Borgogni F, Pantani OL, Pietramellara G (2009) Experimental discrimination and molecular characterization of the extracellular soil DNA fraction. Antonie Van Leeuwenhoek 96:653–657CrossRefGoogle Scholar
  7. Cheng YF, Mao SY, Liu JX, Zhu WY (2009) Molecular diversity analysis of rumen methanogenic Archaea from goat in eastern China by DGGE methods using different primer pairs. Lett Appl Microbiol 48:585–592CrossRefGoogle Scholar
  8. Chroňáková A, Radl V, Čuhel J, Šimek M, Elhottová D, Engel M, Schloter M (2009) Overwintering management on upland pasture causes shift in the abundance of denitrifying microbial communities, the activity and N2O producing ability. Soil Biol Biochem 41:1132–1138CrossRefGoogle Scholar
  9. de Lipthay JR, Enzinger C, Johnsen K, Aamand J, Sørensen SJ (2004) Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol Biochem 36:1607–1614CrossRefGoogle Scholar
  10. Ferrari VC, Hollibaugh JT (1999) Distribution of microbial assemblages in the Central Arctic Ocean basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401:55–68CrossRefGoogle Scholar
  11. Green SJ (2006) A guide to denaturing gradient gel electrophoresis. Online publication. http://ddgehelp.blogspot.com/
  12. Jirout J, Tříska J, Růžičková K, Elhottová D (2009) Disturbing impact of outdoor cattle husbandry on community of arbuscular mycorrhizal fungi in upland pasture soil. Commun Soil Sci Plant Anal 40:736–745Google Scholar
  13. Kirk PL (1950) Kjeldahl method for total nitrogen. Anal Chem 22:354–358CrossRefGoogle Scholar
  14. Kowalchuk GA, Drigo B, Yergeau E, van Veen JA (2006) Assessing bacterial and fungal community structure in soil using ribosomal RNA and other structural gene markers. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil, chap 8. Springer, Berlin, pp 159–188CrossRefGoogle Scholar
  15. Kozdrój J, van Elsas DJ (2000) Application of polymerase chain reaction-denaturing gradient gel electrophoresis for comparison of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting. Biol Fertil Soils 31:372–378CrossRefGoogle Scholar
  16. Lorbeg PM, Majhenic AC, Rogelj I (2009) Evaluation of different primers for PCR-DGGE analysis of cheese-associated enterococci. J Dairy Res 76:265–271CrossRefGoogle Scholar
  17. Lynch JM, Benedetti A, Insam H, Nuti PM, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385CrossRefGoogle Scholar
  18. Marstorp H, Witter E (1999) Extractable dsDNA and product formation as measures of microbial growth in soil upon substrate addition. Soil Biol Biochem 31:1443–1453CrossRefGoogle Scholar
  19. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359CrossRefGoogle Scholar
  20. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581Google Scholar
  21. McGeehan SL, Naylor DV (1988) Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun Soil Sci Plant Anal 19:493–505CrossRefGoogle Scholar
  22. Mehlich A (1984) Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun Soil Sci Plant Anal 15:1409–1416CrossRefGoogle Scholar
  23. Mühling M, Woolven-Allen J, Murrell C, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392CrossRefGoogle Scholar
  24. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  25. Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571CrossRefGoogle Scholar
  26. Nakatsu CH, Torsvik V, Øvreas L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci Soc Am J 64:1382–1388CrossRefGoogle Scholar
  27. Neufeld JD, Mohn WW (2005) Fluorophore-labeled primers improve the sensitivity, versatility, and normalization of denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:4893–4896CrossRefGoogle Scholar
  28. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643Google Scholar
  29. Pesaro M, Widmer F, Nicollier G, Zeyer J (2003) Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation. Soil Biol Biochem 35:1049–1061CrossRefGoogle Scholar
  30. Radl V, Gattinger A, Chroňáková A, Němcová A, Čuhel J, Šimek M, Munch JC, Schloter M, Elhottová D (2007) Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils. ISME J 1:443–452CrossRefGoogle Scholar
  31. Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120CrossRefGoogle Scholar
  32. Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilization of trace elements on microbial biomass and activity, enzyme activities and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712CrossRefGoogle Scholar
  33. Ságová-Marečková M, Čermák L, Novotná J, Plhačková K, Forstová J, Kopecký J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907CrossRefGoogle Scholar
  34. Sanchez O, Gasol JM, Massana R, Mas J, Pedros-Alio C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73:5962–5967CrossRefGoogle Scholar
  35. Sigler WV, Miniaci C, Zeyer J (2004) Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J Microbiol Methods 57:17–22CrossRefGoogle Scholar
  36. Šimek M, Brůček P, Hynšt J, Uhlířová E, Petersen SO (2006) Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area. Agric Ecosyst Environ 112:186–191CrossRefGoogle Scholar
  37. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665Google Scholar
  38. Vainio EJ, Hantula J (2000) Genetic differentiation between European and North American populations of Phlebiopsis gigantea. Mycologia 92:436–446CrossRefGoogle Scholar
  39. Wakelin SA, Gregg AL, Simpson RJ, Li GD, Riley IT, McKay AC (2009) Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 52:237–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. Ascher
    • 1
  • M. T. Ceccherini
    • 1
  • A. Chroňáková
    • 2
  • J. Jirout
    • 2
  • F. Borgogni
    • 1
  • D. Elhottová
    • 2
  • M. Šimek
    • 2
  • G. Pietramellara
    • 1
  1. 1.Dipartimento di Scienza del Suolo e Nutrizione della PiantaUniversità degli Studi di FirenzeFlorenceItaly
  2. 2.Institute of Soil Biology, Biology Centre AS CR, v. v. i., and Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic

Personalised recommendations