World Journal of Microbiology and Biotechnology

, Volume 26, Issue 8, pp 1473–1482

Molecular detection of potentially toxic cyanobacteria and their associated bacteria in lake water column and sediment

  • Konstantinos Ar. Kormas
  • Elisabeth Vardaka
  • Maria Moustaka-Gouni
  • Vasiliki Kontoyanni
  • Evi Petridou
  • Spyros Gkelis
  • Christos Neofitou
Original Paper


We investigated the molecular diversity of cyanobacteria and bacteria during a water bloom in a lake with a long history of toxic cyanobacterial blooms (Lake Kastoria, Greece). We also tested the hypothesis whether bloom-forming cyanobacteria are preserved in the lake’s sediment 2 years after the bloom. The dominant cyanobacteria during the bloom included the potentially toxin-producing Microcystis aeruginosa and several other Chroococcales forms closely related to the genus Microcystis. This suggests that the use of cyanobacterial-specific primers seems to be very informative in describing the cyanobacteria during the water blooms. The bacterial community showed high diversity, consisting mostly of singleton and doubleton phylotypes. The majority of the phylotypes were typical lake bacteria including some potential pathogens and toxin metabolising bacteria, suggesting that the dominant toxic cyanobacteria did not have any significant effect on the bacterial community structure. In the sediment, 2 years after the water bloom, no bloom-forming cyanobacteria were retrieved, suggesting that they cannot be preserved in the sediment. Similar to the water column, sediment bacterial diversity was also high, consisting mostly of yet-uncultured bacteria that are related to environments where organic matter degradation takes place.


Cyanobacteria Bacteria 16S rRNA Water column Sediment Lake Kastoria 

Supplementary material

11274_2010_322_MOESM1_ESM.doc (222 kb)
(DOC 221 kb)


  1. Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3:314–325CrossRefGoogle Scholar
  2. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  3. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRefGoogle Scholar
  4. Cook CM, Vardaka E, Lanaras T (2004) Toxic cyanobacteria in Greek freshwaters, 1987–2000: occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochim Hydrobiol 32:107–124CrossRefGoogle Scholar
  5. Debroas D, Humbert J-F, Enault F, Bronner G, Faubladier M, Cornillot E (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget–France). Environ Microbiol 11:2412–2424CrossRefGoogle Scholar
  6. Falconer IR (1999) An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environ Toxicol 14:5–12CrossRefGoogle Scholar
  7. Falconer IR, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M, Codd GA (1999) Safe levels and safe practices. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. World Health Organization. E and FN Spon, London, pp 155–178Google Scholar
  8. Gkelis S, Harjunpää V, Lanaras T, Sivonen K (2005) Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters. Environ Toxicol 20:249–256CrossRefGoogle Scholar
  9. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 43:45–63Google Scholar
  10. Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when 16S rDNA libraries are large enough? Limnol Oceanogr Methods 2:114–125Google Scholar
  11. Komárek J, Hubel M, Hubel H, Smarda J (1993) The Nodularia studies. Part II: taxonomy. Arch Hydrobiol, Suppl. 96. Algol Stud 68:1–25Google Scholar
  12. Lanaras T, Tsitsamis S, Chlichlia C, Cook CM (1989) Toxic cyanobacteria in Greek freshwaters. J Appl Phycol 1:67–73CrossRefGoogle Scholar
  13. Lane DJ (1991) Nucleic acids techniques in bacterial systematics. Wiley, New YorkGoogle Scholar
  14. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ et al (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174CrossRefGoogle Scholar
  15. Moustaka-Gouni M (1993) Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 249:33–42CrossRefGoogle Scholar
  16. Moustaka-Gouni M, Vardaka E, Michaloudi E, KAr Kormas, Tryfon E, Mihalatou H, Gkelis S, Lanaras T (2006) Plankton food web structure in a eutrophic polymictic lake with a history of toxic cyanobacterial blooms. Limnol Oceanogr 51:715–727CrossRefGoogle Scholar
  17. Moustaka-Gouni M, Vardaka E, Tryfon E (2007) Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575:129–140CrossRefGoogle Scholar
  18. Moustaka-Gouni M, Kormas KA, Vardaka E, Katsiapi M, Gkelis S (2009) Raphidiopsis mediterranea SKUJA represents non-heterocytous life-cycle stages of Cylindrospermopsis raciborskii (WOLOSZYNSKA) SEENAYYA et SUBBA RAJU in Lake Kastoria (Greece), its type locality: evidence by morphological and phylogenetic analysis. Harmful Algae 8:864–872CrossRefGoogle Scholar
  19. Nelson CE (2009) Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. ISME J 3:13–30CrossRefGoogle Scholar
  20. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl Environ Microbiol 63:3327–3332Google Scholar
  21. Ohtsuka T (2005) Epipelic diatoms blooming in Isahaya Tidal Flat in the Ariake Sea, Japan, before the drainage following the Isahaya-Bay Reclamation Project. Phycol Res 53:138–148CrossRefGoogle Scholar
  22. Padisak J (2003) Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method. Hydrobiologia 502:389–394CrossRefGoogle Scholar
  23. Paerl HW, Fulton RS (2006) Ecology of harmful cyanobacteria. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Ecological Studies 189. Springer, Berlin, pp 95–109CrossRefGoogle Scholar
  24. Schwarz JIK, Eckert W, Conrad R (2007) Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30:239–254CrossRefGoogle Scholar
  25. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. World Health Organization. E and FN Spon, London, pp 41–110Google Scholar
  26. Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386CrossRefGoogle Scholar
  27. Spring S, Schulze R, Overmann J, Schleifer K-H (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590CrossRefGoogle Scholar
  28. Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169CrossRefGoogle Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  30. Tryfon E, Moustaka-Gouni M (1997) Species composition and seasonal cycles of phytoplankton with special reference to the nanoplankton of Lake Mikri Prespa. Hydrobiologia 351:61–75CrossRefGoogle Scholar
  31. Vardaka E, Moustaka-Gouni M, Cook CM, Lanaras T (2005) Cyanobacterial blooms and water quality in Greek freshwaters. J Appl Phycol 17:391–401CrossRefGoogle Scholar
  32. Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Röske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol Ecol 46:331–347CrossRefGoogle Scholar
  33. Wu X, Xi W, Ye W, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by16S rRNA gene sequences. FEMS Microbiol Ecol 61:85–96CrossRefGoogle Scholar
  34. Ye W, Liu X, Lin S, Tan J, Pan J, Li D, Yang H (2009a) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol 70:263–276CrossRefGoogle Scholar
  35. Ye W, Liu X, Tan J, Li D, Yang H (2009b) Diversity and dynamics of microcystin—producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8:637–644CrossRefGoogle Scholar
  36. Zeng J, Yang L, Du H, Xia L, Jiang L, Wu J, Wang X (2009a) Bacterioplankton community structure in a eutrophic lake in relation to water chemistry. World J Microbiol Biotechnol 25:763–772CrossRefGoogle Scholar
  37. Zeng J, Yang L, Li J, Liang Y, Xiao L, Jiang L, Zhao D (2009b) Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microbiol Biotechnol 25:225–233CrossRefGoogle Scholar
  38. Zhao X, Yang L, Yu Z, Peng N, Xiao L, Yin D, Qin B (2008) Characterization of depth-related microbial communities in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rRNA fragments. J Environ Sci 20:224–230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Konstantinos Ar. Kormas
    • 1
  • Elisabeth Vardaka
    • 2
  • Maria Moustaka-Gouni
    • 3
  • Vasiliki Kontoyanni
    • 1
  • Evi Petridou
    • 1
  • Spyros Gkelis
    • 1
    • 3
  • Christos Neofitou
    • 1
  1. 1.Department of Ichthyology and Aquatic EnvironmentUniversity of ThessalyNea IoniaGreece
  2. 2.Department of Fisheries and Aquaculture TechnologyAlexander Technological Educational Institute of ThessalonikiNew MoudaniaGreece
  3. 3.Department of BotanyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations