Metagenomics as a new technological tool to gain scientific knowledge

  • María-Eugenia Guazzaroni
  • Ana Beloqui
  • Peter N. Golyshin
  • Manuel Ferrer
Original Paper


Metagenomics (also Environmental Genomics, Ecogenomics or Community Genomics) is an emerging approach to studying microbial communities in the environment. This relatively new technique enables studies of organisms that are not easily cultured in a laboratory, thus differing from traditional microbiology that relies almost entirely on cultured organisms. Metagenomics technology thus holds the premise of new depths of understanding of microbes and, importantly, is a new tool for addressing biotechnological problems, without tedious cultivation efforts. DNA sequencing technology has already made a significant breakthrough, and generation of gigabase-pairs of microbial DNA sequences is not posing a challenge any longer. However, conceptual advances in microbial science will not only rely on the availability of innovative sequencing platforms, but also on sequence-independent tools for getting an insight into the functioning of microbial communities. This is an important issue, as we know that even the best annotations of genomes and metagenomes only create hypotheses of the functionality and substrate spectra of encoded proteins which require experimental testing by classical disciplines such as physiology and biochemistry. In this review, we address the following question, how to take advantage of, and how can we improve the, metagenomic technology for accommodating the needs of microbial biologists and enzymologists?


Metagenomics Microbial diversity Systems microbiology 



This research was supported by the Spanish MEC BIO2006-11738, CSD2007-00005, GEN2006-27750-C-4-E, CDTI I + DEA (CENIT-2007-1031) and PET2006_0052 projects. A. Beloqui thanks the Spanish MEC for a FPU fellowship. P. N. Golyshin acknowledges the Grant 0313751 K from the Federal Ministry for Science and Education (BMBF) within the GenoMikPlus initiative.


  1. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 11:e368. doi: 10.1371/journal.pbio.0040368 CrossRefGoogle Scholar
  2. Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M, Wésolowski-Louvel M, Marmeisse R (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 7:632–642. doi: 10.1038/ismej.2007.68 CrossRefGoogle Scholar
  3. Beloqui A, de María PD, Golyshin PN, Ferrer M (2008) Recent trends in industrial microbiology. Curr Opin Microbiol 11:240–248. doi: 10.1016/j.mib.2008.04.005 CrossRefGoogle Scholar
  4. Bench SR, Hanson TE, Williamson KE, Ghosh D, Radosovich M, Wang K, Wommack KE (2007) Metagenomic characterization of Chesapeake Bay virioplankton. Appl Environ Microbiol 23:7629–7641. doi: 10.1128/AEM.00938-07 CrossRefGoogle Scholar
  5. Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 3:224–234. doi: 10.1038/ismej.2007.39 CrossRefGoogle Scholar
  6. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552. doi: 10.1016/j.gde.2006.10.009 CrossRefGoogle Scholar
  7. Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583–10588. doi: 10.1073/pnas.0709942105 CrossRefGoogle Scholar
  8. Bodrossy L, Stralis-Pavese N, Konrad-Köszler M, Weilharter A, Reichenauer TG, Schöfer D, Sessitsch A (2006) mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl Environ Microbiol 72:1672–1676. doi: 10.1128/AEM.72.2.1672-1676.2006 CrossRefGoogle Scholar
  9. Cakir T, Patil KR, Onsan Z, Ulgen KO, Kirdar B, Nielsen J (2006) Integration of metabolome data with metabolic networks reveals reporter reactions. Mol Syst Biol 2:50. doi: 10.1038/msb4100085 CrossRefGoogle Scholar
  10. Chan CK, Hsu AL, Tang SL, Halgamuge SK (2008) Using growing self-organising maps to improve the binning process in environmental whole-genome shotgun sequencing. J Biomed Biotechnol 2008:513701. doi: 10.1155/2008/513701 Google Scholar
  11. Church JM (2005) The personal genome project. Mol Syst Biol 1:20050030Google Scholar
  12. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui J, Hutchison L, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287. doi: 10.1126/science.1146498 CrossRefGoogle Scholar
  13. DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469. doi: 10.1038/nrmicro1158 CrossRefGoogle Scholar
  14. DeLong EF (2006) Archaeal mysteries of the deep revealed. Proc Natl Acad Sci USA 103:6417–6418. doi: 10.1073/pnas.0602079103 CrossRefGoogle Scholar
  15. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, Liu H, Furlan M, Wegley L, Chau B, Ruan Y, Hall D, Angly FE, Edwards RA, Li L, Thurber RV, Reid RP, Siefert J, Souza V, Valentine DL, Swan BK, Breitbart M, Rohwer F (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–343. doi: 10.1038/nature06735 CrossRefGoogle Scholar
  16. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L, McDaniel L, Moran MA, Nelson KE, Nilsson C, Olson R, Paul J, Brito BR, Ruan Y, Swan BK, Stevens R, Valentine DL, Thurber RV, Wegley L, White BA, Rohwer F (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632. doi: 10.1038/nature06810 CrossRefGoogle Scholar
  17. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57. doi: 10.1186/1471-2164-7-57 CrossRefGoogle Scholar
  18. Eisen JA (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5:e82. doi: 10.1371/journal.pbio.0050082 CrossRefGoogle Scholar
  19. Farber CR, Lusis AJ (2008) Integrating global gene expression analysis and genetics. Adv Genet 60:571–601. doi: 10.1016/S0065-2660(07)00420-8 CrossRefGoogle Scholar
  20. Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, Wenner BR, Ilkayeva OR, Keller MP, Blasiole DA, Kendziorski C, Yandell BS, Newgard CB, Attie AD (2008) Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet 3:e1000034. doi: 10.1371/journal.pgen.1000034 CrossRefGoogle Scholar
  21. Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214. doi: 10.1016/j.mib.2007.05.004 CrossRefGoogle Scholar
  22. Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2008) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16:109–123. doi: 10.1159/000142898 CrossRefGoogle Scholar
  23. Ferrer M, Beloqui A, Vieites JM, Guazzaroni ME, Berger I, Aharoni A (2009) Interplay of metagenomics and in vitro compartmentalization. Microbiol Biotechnol 2:31–39. doi: 10.1111/j.1751-7915.2008.00057.x CrossRefGoogle Scholar
  24. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066. doi: 10.1128/AEM.00358-07 CrossRefGoogle Scholar
  25. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 10:3805–3810. doi: 10.1073/pnas.0708897105 CrossRefGoogle Scholar
  26. García-Martín H, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1229–1230. doi: 10.1038/nbt1006-1229 CrossRefGoogle Scholar
  27. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi: 10.1126/science.1124234 CrossRefGoogle Scholar
  28. Hallin PF, Binnewies TT, Ussery DW (2008) The genome BLASTatlas-a GeneWiz extension for visualization of whole-genome homology. Mol Biosyst 5:363–371. doi: 10.1039/b717118h CrossRefGoogle Scholar
  29. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Mol Biol Rep 68:669–685Google Scholar
  30. Handelsman J (2008) Metagenomics is not enough. DNA Cell Biol 27:219–221. doi: 10.1089/dna.2008.1503 CrossRefGoogle Scholar
  31. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249. doi: 10.1016/S1074-5521(98)90108-9 CrossRefGoogle Scholar
  32. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 3:377–386. doi: 10.1101/gr.5969107 CrossRefGoogle Scholar
  33. Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylackama Vlieg JE, de Vos WM (2007) The micro-petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104:18217–18222. doi: 10.1073/pnas.0701693104 CrossRefGoogle Scholar
  34. Ishoey T, Woyke T, Stepanauskas R, Novotny M, Lasken RS (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204. doi: 10.1016/j.mib.2008.05.006 CrossRefGoogle Scholar
  35. Johnson PLF, Slatkin M (2006) Inference of population genetic parameters in metagenomics: a clean look at messy data. Genome Res 16:1320–1327. doi: 10.1101/gr.5431206 CrossRefGoogle Scholar
  36. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034. doi: 10.1038/nbt.1488 CrossRefGoogle Scholar
  37. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36:2230–2239. doi: 10.1093/nar/gkn038 CrossRefGoogle Scholar
  38. Lasken RS (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10:510–516. doi: 10.1016/j.mib.2007.08.005 CrossRefGoogle Scholar
  39. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi: 10.1038/nature04983 CrossRefGoogle Scholar
  40. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC (2008) The genomes on line database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 36:D475–D479. doi: 10.1093/nar/gkm884 CrossRefGoogle Scholar
  41. Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 7135:537–541. doi: 10.1038/nature05624 CrossRefGoogle Scholar
  42. Lombardot T, Kottmann R, Pfeffer H, Richter M, Teeling H, Quast C, Glöckner FO (2006) resources for marine ecological genomics. Nucleic Acids Res 34:390–393. doi: 10.1093/nar/gkj070 CrossRefGoogle Scholar
  43. Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578. doi: 10.1111/j.1574-6976.2008.00111.x CrossRefGoogle Scholar
  44. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104:11889–11894. doi: 10.1073/pnas.0704662104 CrossRefGoogle Scholar
  45. Margulies EH, NISC Comparative Sequencing Program, Maduro VV, Thomas PJ, Tomkins JP, Amemiya CT, Luo M, Green ED (2005) Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. Proc Natl Acad Sci USA 102:3354–3359. doi: 10.1073/pnas.0408539102 CrossRefGoogle Scholar
  46. McHardy AC, Rigoutsos I (2007) What’s in the mix: phylogenetic classification of metagenome sequence samples. Curr Opin Microbiol 10:449–503CrossRefGoogle Scholar
  47. Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34:5623–5630. doi: 10.1093/nar/gkl723 CrossRefGoogle Scholar
  48. Poelarends GJ, Almrud JJ, Serrano H, Darty JE, Johnson WH Jr, Hackert ML, Whitman CP (2006) Evolution of enzymatic activity in the tautomerase superfamily: mechanistic and structural consequences of the L8R mutation in 4-oxalocrotonate tautomerase. Biochemistry 45:7700–7708. doi: 10.1021/bi0600603 CrossRefGoogle Scholar
  49. Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699. doi: 10.1038/nrmicro1935 CrossRefGoogle Scholar
  50. Raes J, Foerstner KU, Bork P (2007) Get the most out of your metagenome: computational analysis of environmental sequence data. Curr Opin Microbiol 10:490–498. doi: 10.1016/j.mib.2007.09.001 CrossRefGoogle Scholar
  51. Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989. doi: 10.1111/j.1462-2920.2004.00664.x CrossRefGoogle Scholar
  52. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al (2007) The Sorcerer II global ocean sampling expedition: northwest. Atlantic through eastern tropical Pacific. PLoS Biol 5:398–431. doi: 10.1371/journal.pbio.0050077 CrossRefGoogle Scholar
  53. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62. doi: 10.1038/msb4100109 CrossRefGoogle Scholar
  54. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLOS Comput Biol 7:e92. doi: 10.1371/journal.pcbi.0020092 CrossRefGoogle Scholar
  55. Schloss PD, Handelsman JA (2008) A statistical toolbox for metagenomics: assessing functional diversity in microbial communities. BMC Bioinformatics 9:34. doi: 10.1186/1471-2105-9-34 CrossRefGoogle Scholar
  56. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962. doi: 10.1007/s00253-007-0945-5 CrossRefGoogle Scholar
  57. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344. doi: 10.1038/nrg1325 CrossRefGoogle Scholar
  58. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120. doi: 10.1073/pnas.0605127103 CrossRefGoogle Scholar
  59. Staley JT, Konopka A (1985) Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346. doi: 10.1146/annurev.mi.39.100185.001541 CrossRefGoogle Scholar
  60. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557. doi: 10.1126/science.1107851 CrossRefGoogle Scholar
  61. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi: 10.1038/nature05414 CrossRefGoogle Scholar
  62. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43. doi: 10.1038/nature02340 CrossRefGoogle Scholar
  63. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi: 10.1126/science.1093857 CrossRefGoogle Scholar
  64. Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33:236–255. doi: 10.1111/j.1574-6976.2008.00152.x CrossRefGoogle Scholar
  65. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. doi: 10.1038/nature06269 CrossRefGoogle Scholar
  66. Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719. doi: 10.1111/j.1462-2920.2007.01383.x CrossRefGoogle Scholar
  67. Williamson SJ, Rusch DB, Yooseph S, Halpern AL, Heidelberg KB, Glass JI, Andrews-Pfannkoch C, Fadrosh D, Miller CS, Sutton G, Frazier M, Venter JC (2008) The Sorcerer II global ocean sampling expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS ONE 1:e1456. doi: 10.1371/journal.pone.0001456 CrossRefGoogle Scholar
  68. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–955. doi: 10.1038/nature05192 CrossRefGoogle Scholar
  69. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16. doi: 10.1371/journal.pbio.0050016 CrossRefGoogle Scholar
  70. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y (2006) RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 4:e3. doi: 10.1371/journal.pbio.0040003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • María-Eugenia Guazzaroni
    • 1
  • Ana Beloqui
    • 1
  • Peter N. Golyshin
    • 2
    • 3
  • Manuel Ferrer
    • 1
  1. 1.CSIC, Institute of CatalysisMadridSpain
  2. 2.School of Biological SciencesBangor UniversityGwyneddUK
  3. 3.Centre for Integrated Research in the Rural Environment, Aberystwyth University-Bangor University Partnership (CIRRE); Environmental Microbiology Laboratory, HZI-Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations