Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isolation of fungi and optimization of process parameters for decolorization of distillery mill effluent

Abstract

Five different fungi isolated from distillery mill site in which two isolates (DF3 and DF4) had higher capabilities to remove color were identified as Emericella nidulans var. lata and Neurospora intermedia, respectively. Optimization of process parameter for decolorization was initially performed to select growth factors which were further substantiated by Taguchi approach in which seven factors, %carbon, %nitrogen, duration, pH, temperature, stirring and inoculum size, at two levels applying L-8 orthogonal array were taken for both fungi. Maximum color was removed at pH 3, temperature 30°C, stirring 125 rpm, dextrose (0.05%) and sodium nitrate (0.025%) by both fungi. After optimization, there was two-fold increase in color removal from 38 to 62% (DF3) and 31 to 64% (DF4) indicating significance of Taguchi approach in decolorization of distillery mill effluent. The mechanism for decolorization was determined by enzyme analysis, laccase and glucose oxidase, and indicated significant activity in DF3 as compared to DF4.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adikane HV, Dange MN, Selvakumari K (2006) Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresour Technol 97:2131–2135. doi:10.1016/j.biortech.2005.10.011

  2. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American public health association, Washington

  3. Bakhtiari MR, Faezi MG, Fallahpour M, Noohi A, Moazami N, Amidi Z (2006) Medium optimization by orthogonal array designs for urease production by Aspergillus niger PTCC5011. Process Biochem 41:547–551. doi:10.1016/j.procbio.2005.09.002

  4. Benito GG, Miranda MP, de los Santos DR (1997) Decolorization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresour Technol 61(1):33–37. doi:10.1016/S0960-8524(97)84695-0

  5. Bernardo EC, Egashira R, Kawasaki J (1997) Decolorization of molasses wastewater using activated carbon prepared from cane bagasse. Carbon 35(9):1217–1221. doi:10.1016/S0008-6223(97)00105-X

  6. Dasu VV, Panda T, Chidambaram M (2003) Determination of significant parameters for improved griseofulvin production in a batch bioreactor by Taguchi’s method. Process Biochem 38:877–880. doi:10.1016/S0032-9592(02)00068-7

  7. Fahy V, FitzGibbon FJ, McMullan G, Singh D, Marchant R (1997) Decolorization of molasses spent wash by Phanerochaete chrysosporium. Biotechnol Lett 19:97–99. doi:10.1023/A:1018335608459

  8. Hortal S, Pera J, Galipienso L, Parlad’e J (2006) Molecular identification of the edible ectomycorrhizal fungus Lactarius deliciosus in the symbiotic and extraradical mycelium stages. J Biotechnol 126:123–134. doi:10.1016/j.jbiotec.2006.04.011

  9. Kackar R (1985) Off-line quality control, parameter design and Taguchi method. J Qual Technol 17:176–188

  10. Karakousis A, Tan L, Ellis D, Alexiou H, Wormald PJ (2006) An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J Microbiol Methods 65:38–48. doi:10.1016/j.mimet.2005.06.008

  11. Kitts DD, Wu CH, Stich HF, Powrie WD (1993) Effect of glucose–glycine Maillard reaction products on bacterial and mammalian cells mutagenesis. J Agric Food Chem 41:2353–2358. doi:10.1021/jf00036a026

  12. Kona RP, Qureshi N, Pai JS (2001) Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresour Technol 78:123–126. doi:10.1016/S0960-8524(01)00014-1

  13. Migo VP, Matsumura M, DelRosario EJ, Kataoka H (1993) Decolorization of molasses wastewater using an inorganic flocculent. J Ferment Bioeng 75(6):438–442. doi:10.1016/0922-338X(93)90092-M

  14. Miyata N, Mori T, Iwahori K, Fujita M (2000) Microbial decolorization of melanoidin—containing wastewaters: combined use of activated sludge and the fungus Coriolus hirsutus. J Biosci Bioeng 89:145–150. doi:10.1016/S1389-1723(00)88728-9

  15. NakajimaKambe T, Shimomura M, Nomura N, Chanpornpong T, Nakahara T (1999) Decolorization of molasses wastewater by Bacillus sp. under thermophilic and anaerobic conditions. J Biosci Bioeng 87:119–121. doi:10.1016/S1389-1723(99)80021-8

  16. Niku-Paavola ML, Karhunen E, Salola P, Raunio V (1988) Lignolytic enzymes of the white rot fungus Phlebia radiate. Biochem J 254:877–884

  17. Ohmomo S, Kaneko Y, Sirianuntapiboon S, Somachi P, Atthasampunna P, Nakamura I (1987) Decolorization of molasses wastewater by a thermophilic strain, Aspergillus fumigatus G-2–6. Agric Biol Chem 52:3339–3346

  18. Ohmomo S, Kainuma M, Kamimura K, Sirianuntapiboon S, Oshima I, Atthasumpunna P (1988) Adsorption of melanoidin to the mycelia of Aspergillus oryzae Y-2–32. Agric Biol Chem 52:381–386

  19. Pena M, Gonzalez G, San N, Nieto H (1996) Color elimination from molasses wastewater by Aspergillus niger. Bioresour Technol 57:229–235. doi:10.1016/S0960-8524(96)00048-X

  20. Phadke MS, Dehnad K (1988) Optimization of product and process design for quality and cost. Qual Reliab Eng Int 4:159–169. doi:10.1002/qre.4680040205

  21. Prakasham RS, Rao CS, Rao S, Rajesham S, Sharma PN (2005) Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl Biochem Biotechnol 120:133–144. doi:10.1385/ABAB:120:2:133

  22. Raghukumar C, Rivonkar G (2001) Decolorization of molasses spent wash by the white rot fungus Flavadon flavus, isolated from marine habitat. Appl Microbiol Biotechnol 55:510–514. doi:10.1007/s002530000579

  23. Raghukumar C, Mohandass C, Kamat S, Shailaja MS (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzyme Microb Technol 35:197–202. doi:10.1016/j.enzmictec.2004.04.010

  24. Roy RK (2007) Qualitek-4, software for automatic design and analysis of Taguchi experiments, Nutek. Inc. Bloomfield Hills, Michigan, USA

  25. Shayegan J, Pazouki M, Afshari A (2005) Continuous decolorization of anaerobically digested distillery wastewater. Process Biochem 40:1323–1329. doi:10.1016/j.procbio.2004.06.009

  26. Sirianuntapiboon S, Sihanonth P, Somchai P, Atthasampunna P, Hayashida S (1995) An adsorption mechanism for melanoidin decolourization by Rhizoctonia sp. Biosci Biotechnol Biochem 59:1185–1189

  27. Sirianuntapiboon S, Zohsalam P, Ohmomo S (2004) Decolorization of molasses wastewater by Citeromyces sp WR-43–6. Process Biochem 39:917–924. doi:10.1016/S0032-9592(03)00199-7

  28. Stowe RA, Mayer RP (1999) Efficient screening of process variables. Ind Eng Chem 56:36–40

  29. Thakur IS (2004) Screening and identification of microbial strains for removal of colour and adsorbable organic halogens in pulp and paper mill effluent. Process Biochem 39:1693–1699. doi:10.1016/S0032-9592(03)00303-0

  30. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249. doi:10.1016/0076-6879(88)61025-1

  31. Vahabzadeh F, Mehranian M, Saatari AR (2004) Colour removal ability of Phanerochaete chrysosporium in relation to lignin peroxidases and manganese peroxidases produced in molasses wastewaters. World J Microbiol Biotechnol 20:859–864. doi:10.1007/s11274-004-9005-9

  32. Wariishi H, Valli K, Gold MH (1992) Manganese (II) oxidation by manganese peroxidase from the Basidiomycete Phanerochaete chrysosporium: kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

  33. Watanabe Y, Sugi R, Tanaka Y, Hayashida S (1982) Enzymatic decolorization of melanoidin by Coriolus sp. No. 20. Agric Biol Chem 46:1623–1630

  34. Yang Q, Jia Z, Liu R, Chen J (2007) Molecular diversity and anammox activity of novel planktomycete-like bacteria in the waste water treatment system of a full-scale alcohol manufacturing plant. Process Biochem 42:180–187. doi:10.1016/j.procbio.2006.07.032

Download references

Acknowledgments

This paper was supported by the research grants of University for potential of Excellence. The author (GK) thanks University Grants Commission, for providing Junior Research Fellowship Government of India, New Delhi, India. We thank Modi distilleries, Modinagar, Uttar Pradesh, India for providing effluent and sludge during the course of investigation. We thank R. K. Roy (Nutek Inc., USA) for providing free demo version of their Software Qulitek-4®.

Author information

Correspondence to Indu Shekhar Thakur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaushik, G., Thakur, I.S. Isolation of fungi and optimization of process parameters for decolorization of distillery mill effluent. World J Microbiol Biotechnol 25, 955 (2009). https://doi.org/10.1007/s11274-009-9970-0

Download citation

Keywords

  • Decolorization
  • Distillery spent wash
  • Emericella nidulans var. lata
  • Neurospora intermedia
  • Taguchi approach