Molecular identification of Staphylococcus xylosus MAK2, a new α-l-rhamnosidase producer

  • Munish Puri
  • Aneet Kaur
Original Paper


A bacterial strain, MAK-2, was isolated as a producer of α-l-rhamnosidase from a soil sample of Dehradoon, India. The strain was identified based on morphology, physiological tests and 16S rDNA analysis. The phylogenetic analysis based on the 16S rDNA sequence, identified the isolate as Staphylococcus xylosus, a non-pathogenic member of CNS (coagulase-negative staphylococci) family. The strain was capable of producing α-l-rhamnosidase by hydrolysing flavonoids thus confirming potential application in the citrus-processing industry.


α-l-rhamnosidase 16S rDNA sequence Staphylococcus xylosus Naringin 



Authors thank Dr. Rakesh Sharma, IGIB for providing help in 16S rDNA gene sequencing. MP thanks Council of Industrial and Scientific Research (CSIR), India for a project grant CSIR 38(1133)/07/EMR-II.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:729–731Google Scholar
  2. Avila M, Jaquet M, Moine D, Requena T, Peláez C, Arigoni F, Jankovic I (2009) Physiological and biochemical characterization of the two alpha-l-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology 155:2739–2749CrossRefGoogle Scholar
  3. Beekwilder J, Marcozzi D, Vecchi S, deVos R, Janssen P, Francke C, van Hylckama Vlieg J, Hall RD (2009) Characterization of Rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl Environ Microbiol 75:3447–3454CrossRefGoogle Scholar
  4. Birgisson H, Hreggvidsson GO, Fridjónsson OH, Mort A, Kristjánsson JK, Mattiasson B (2004) Two new thermostable alpha l-rhamnosidase from a novel thermophilic bacterium. Enz Microb Tech 34:561–571CrossRefGoogle Scholar
  5. Birgisson H, Wheat JO, Hreggvidsson GO, Kristjansson JK, Mattiasson B (2007) Immobilization of recombinant E. coli producing a thermostable rhamnosidase: creation of a bioreactor for hydrolyses of naringin. Enz Microbiol Technol 40:1181–1187CrossRefGoogle Scholar
  6. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, Villani F (2004) PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J App Microbiol 97:719–730CrossRefGoogle Scholar
  7. Boettger EC (1996) Approaches for identification of microorganisms. ASM News 62:247–250Google Scholar
  8. Buchanan RE, Gibbons NR (eds) (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  9. Davies GJ, Gloster TM, Henrissat B (2005) Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol 15:637–645CrossRefGoogle Scholar
  10. Dordet-Frisoni E, Dorchies G, De Araujo C, Talon R, Leroy S (2007) Genomic diversity in Staphylococcus xylosus. App Environ Microbiol 73:7199–7209CrossRefGoogle Scholar
  11. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537CrossRefGoogle Scholar
  12. Hashimoto W, Murata K (1998) l-Rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharides of Sphingan. Biosci Biotechnol Biochem 62:1068–1074CrossRefGoogle Scholar
  13. Hashimoto W, Miyake O, Nankai H, Murata K (2003) Molecular identification of an alpha-l-rhamnosidase from Bacillus sp. Strain GL1 as an enzyme involved in complete metabolism of gellan. Arch Biochem Biophys 415:235–244CrossRefGoogle Scholar
  14. Jang IS, Kim DH (1996) Purification characterization of alpha l-rhamnosidase from Bacteroids JY-6, a human intestinal bacterium. Biol Pharm Bull 19:1546–1549Google Scholar
  15. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12:962–968Google Scholar
  16. Miake F, Murata K, Kuroiwa A, Kumamoto T, Kuroda S, Terasawa T, Tone H, Watanabe K (1995) Characterization of Pseudomonas paucimobilis FP2001 which forms flagella depending upon the presence of rhamnose in liquid medium. Microbiol Immunol 39:437–442Google Scholar
  17. Miake F, Sabho T, Taksue H, Yanagida F, Kasige N, Watanabe K (2000) Purification and characterization of intracellular alpha-l-rhamnosidase from Pseudomonas paucemobilis FP2001. Arch Microbiol 173:65–70CrossRefGoogle Scholar
  18. Puri M, Banerjee UC (2000) Production, purification and characterization of the dibittering enzyme naringinase. Biotechnol Adv 18:207–217CrossRefGoogle Scholar
  19. Puri M, Banerjee A, Banerjee UC (2005) Optimisation of process parameteres for the production of naringinase by Aspergillus niger MTCC 1344. Process Biochem 40:195–201CrossRefGoogle Scholar
  20. Puri M, Kaur A, Kanwar JR, Singh RS (2008) Immobilized enzymes for debittering citrus fruit juices. In: Busto MD, Ortega N (eds) Food enzymes: application of new technologies. Transworld Research Network, India, pp 91–103Google Scholar
  21. Puri M, Kaur A, Singh RS, Singh A (2009) Response surface optimization of medium components for naringinase production from Staphlococcus xylosus MAK-2. App Biochem Biotechnol Sep 8 [Epub ahead of print]Google Scholar
  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructring phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USAGoogle Scholar
  24. Thirkettle J (2000) SB-253514 and analogues; novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579—III. Biotransformation using naringinase. J Antibiotic 53:733–735Google Scholar
  25. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680CrossRefGoogle Scholar
  26. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090CrossRefGoogle Scholar
  27. Zverlov VV, Hertel C, Bronnernmeier K, Hroch A, Kellermann J, Schwarz WH (2000) The thermostable alpha-l-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of bacterial alpha-l-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol 35:173–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centre for Biotechnology and Interdisciplinary Sciences (Biodeakin), Institute for Technology Research and Innovation (ITRI)Deakin UniversityMelbourneAustralia
  2. 2.Fermentation and Protein Biotechnology Laboratory, Department of BiotechnologyPunjabi UniversityPatialaIndia

Personalised recommendations