Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR–DGGE


In vitro propagated plants are believed to be free of microbes. However, after 5 years of in vitro culture of pineapple plants, without evidence of microbial contamination, the use of culture-independent molecular approach [classifying heterogeneous nucleic acids amplified via universal and specific 16S rRNA gene by polymerase chain reaction (PCR)], and further analysis by denaturing gradient gel electrophoresis (DGGE) revealed endophytic bacteria in roots, young and mature leaves of such plants. The amplification of 16S rRNA gene (Bacteria domain) with the exclusion of the plant chloroplast DNA interference, confirmed the presence of bacterial DNA, from endophytic microorganisms within microplant tissues. PCR–DGGE analysis revealed clear differences on bacterial communities depending on plant organ. Group-specific DGGE analyses also indicated differences in the structures of Actinobacteria, Alphaproteobacteria and Betaproteobacteria communities in each part of plants. The results suggest the occurrence of a succession of bacterial communities colonizing actively the microplants organs. This study is the first report that brings together evidences that pineapple microplants, previously considered axenic, harbor an endophytic bacterial community encompassing members of Actinobacteria, Alphaproteobacteria and Betaproteobacteria group which is responsive to differences in organs due to plant development.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Almeida CV, Yara R, Almeida M (2005) Fungos endofíticos isolados de ápices caulinares de pupunheira cultivada in vivo e in vitro. Pesq agropec bras 40:467–470. doi:10.1590/S0100-204X2005000500007

  2. Almeida CV, Andreote F, Yara R, Tanaka FAO, Azevedo JL, Almeida M (2009) Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World. J Microbiol Biotechnol (in press)

  3. Andreote FD, Lacava PT, Gai CS, Araujo WL, Maccheroni W, van Overbeek LS, van Elsas JD, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa. Can J Microbiol 52:419–426. doi:10.1139/W05-142

  4. Andreote FD, Rossetto PB, Mendes R, Avila LA, Labate CA, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL (2009) Bacterial community in the rhizosphere and rhizoplane of wild type and transgenic eucalyptus. World J Microbiol Biotechnol. doi:10.1007/s11274–009-9990–9

  5. Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914. doi:10.1128/AEM.68.10.4906-4914.2002

  6. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192. doi:#10.1016/S0038-0717(03)00179-2

  7. Bethlenfalvay GJ, Brown MS, Pacovsky RS (1982) Relationship between host and endophyte development in mycorrhizal soybean. New Phytol 90:537–543. doi:0028-646X/82/030537-I-07

  8. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. doi:10.1007/s002480000087

  9. Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araujo WL, Azevedo JL, Melo IS (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195. doi:10.1007/s11274-008-9878-0

  10. George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture. Springer, Dordrecht

  11. Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180. doi:10.1023/A:1010350406708

  12. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241. doi:0099-2240/97

  13. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mesgeay M, Van Der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. doi:10.1080/0735-260291044377

  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

  15. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700. doi:0099-2240/93/030695-06

  16. Pirttilä AM, Laukkanen H, Pospiech H, Myllyla R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch fine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077. doi:0099-2240/00

  17. Pospíšilová J, Čatský J, Solárová J, Tichá I (1987) Photosynthesis of plant regenerants. Specificity of in vitro conditions and plantlet response. Biol Plant 29:415–421. doi:10.1007/BF02882209

  18. Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ (2001) Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31–44. doi:10.1007/BF01288358

  19. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

  20. Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113. doi:10.1023/A:1004623523179

  21. Weber OB, Lima RN, Crisóstomo LA, Freitas JAD, Carvalho ACPP, Maia AHN (2009) Effect of diazotrophic bacterium inoculation and organic fertilization on yield of Champaka pineapple intercropped with irrigated sapota. Plant Soil. doi:10.1007/s11104–009-0059–1

Download references


This work was supported by a doctoral scholarship from FAPESP (Foundation for Research Assistance, São Paulo State, Brazil, scholarship 2007/06731-6).

Author information

Correspondence to Monita F. Abreu-Tarazi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abreu-Tarazi, M.F., Navarrete, A.A., Andreote, F.D. et al. Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR–DGGE. World J Microbiol Biotechnol 26, 555–560 (2010).

Download citation


  • Micropropagation
  • Ananas comosus
  • Endophyte