World Journal of Microbiology and Biotechnology

, Volume 25, Issue 12, pp 2227–2238 | Cite as

Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine

  • Hafedh HajlaouiEmail author
  • Najla Trabelsi
  • Emira Noumi
  • Mejdi Snoussi
  • Hanen Fallah
  • Riadh Ksouri
  • Amina Bakhrouf
Original Paper


The composition of the essential oils and methanolic extracts of two cultivated mint species (M. longifolia and M. pulegium), as well as the in vitro antimicrobial and antioxidant activities of the essential oil and methanol extract of Mentha longifolia and Mentha pulegium were compared. GC-MS analysis of the essential oil identified 41 compounds constituting 96.66 and 96.13% of the total oil from M. longifolia and M. pulegium, respectively. The later oils were rich on pulegone (47.15 and 61.11%, respectively). Moreover, 1,8 cineole (11.54%), menthone (10.7%), α-pinene (3.57%), α-terpineol (3.17%) and d-cadinene (3.53%) were only present in M. longifolia oil, while isomenthone (17.02%), and piperitone (2.63%), were characteristic of M. pulegium oil. Shoot extract of the two species showed significantly different contents in total polyphenols (89.1 and 37.41 mg GAE/g DW), flavonoids (63.93 and 33.83 mg CE/g DW) and tannins (1.47 and 3.07 mg CE/g DW), respectively in M. longifolia and M. pulegium. The essential oils showed strong antimicrobial activity against all 16 microorganisms tested, whereas the methanol extracts were inactive. Moreover, the essential oils showed higher antioxidant activity than the methanolic extracts against the DPPH and superoxide radical scavenging. In fact, antioxidant activities of the oils were the same for both M. longifolia and M. pulegium against DPPH (IC50 = 9 and 10 μg/ml, respectively) and 2-fold and 4-fold higher than shoot extracts (IC50 = 20 and 48 μg/ml, respectively). Moreover, both oils showed the same antioxidative abilities as compared to the positive control (butylated hydroxytoluene). In the same way, the capacity to inhibit superoxide anion was very significant for the two oils (0.1 μg/ml for M. longifolia and 0.11 μg/ml for M. pulegium).


Mentha longifolia Mentha pulegium Essential oil GC GC/MS Phenolic compounds Antioxidant activity Antimicrobial capacity 


  1. Adams RP (2001) Identification of essential oil components by gas chromatography/mass spectromety. Carol Stream, Allured, ILGoogle Scholar
  2. Angioni A, Barra A, Coroneo V et al (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54:4364–4370CrossRefGoogle Scholar
  3. Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils—A review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  4. Betts TJ (2001) Chemical characterisation of the different types of volatile oil constituents by various solute retention ratios with the use of conventional and novel commercial gas chromatographic stationary phases. J Chromatogr A936:33–46CrossRefGoogle Scholar
  5. Bowles EJ (2003) Chemistry of aromatherapeutic oils. Allen & Unwin, London. ISBN 174114051XGoogle Scholar
  6. Budavari S, O’Neil MJ, Smith A, Heckelman PE (eds) (1989) The Merck Index. An encyclopedia of chemicals, drug, and biologicals, 11th edn. Merck & Co., RahwayGoogle Scholar
  7. Candan F, Unlu M, Tepe B et al (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol 87:215–220CrossRefGoogle Scholar
  8. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582Google Scholar
  9. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  10. Dewanto V, Wu X, Adom KK et al (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014CrossRefGoogle Scholar
  11. Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097CrossRefGoogle Scholar
  12. Dorman HJ, Kosar M, Kahlos K et al (2003) Antioxidant prosperities and composition of aqueous extracts from Mentha species, hybrids, varieties and cultivars. J Agric Food Chem 51:4563–4569CrossRefGoogle Scholar
  13. Duh P, Tu YY, Yen GC (1999) Antioxidant activity of water extract of harng jyur (Chrysanthemum morifolium. Ramat). Lebenson Wiss Technol 32:269–277CrossRefGoogle Scholar
  14. Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904Google Scholar
  15. Espin JC, Soler-Rivas C, Wichers HJ (2000) Characterisation of the total free radical scavenger capacity of vegetable oils and oil fractions using 2.2-diphenyl-1-picrylhydrazyl radical. J Agric Food Chem 48:648–656CrossRefGoogle Scholar
  16. European Pharmacopoeia (1975) Maisonneuve SA, Sainte-RuffineGoogle Scholar
  17. Ghoulami S, Idrissi A, Fkih-Tetouani S (2000) Phytochemical study of Mentha longifolia of Morocco. Fitoterapia 72:596–598CrossRefGoogle Scholar
  18. Gul P (1994) Seasonal variation of oil and menthol content in Mentha arvensis Linn. Pakistan J For 44:16–20Google Scholar
  19. Gulluce M, Sahin F, Sokmen M et al (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem 103:1449–1456CrossRefGoogle Scholar
  20. Gupta R (1991) Agrotechnology of medicinal plants. In: Wijesekera ROB (ed) The medicinal plant industry. CRC Press, Boca Raton, pp 43–57Google Scholar
  21. Hajlaoui H, Snoussi M, Ben Jannet H et al (2008) Comparison of chemical composition and antimicrobial activities of Mentha longifolia L. ssp. longifolia essential oil from two Tunisian localities (Gabes and Sidi Bouzid). Ann Microbiol 58(3):103–110CrossRefGoogle Scholar
  22. Hanato T, Kagawa H, Yasuhara T et al (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097Google Scholar
  23. Hoet S, Stévigny C, Hérent MF et al (2006) Antitrypanosomal compounds from leaf essential oil of Strychnos spinosa. Planta Med 72:480–482CrossRefGoogle Scholar
  24. Ipek E, Zeytinoglu H, Okay S et al (2005) Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem 93:551–556CrossRefGoogle Scholar
  25. Iscan G, Kirimer N, Kurkcuoglu M, Baser KHC et al (2002) Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem 50(14):3943–3946CrossRefGoogle Scholar
  26. Jia Z, Tang M, Wu J (1998) The determination of flavonoid contents in mulberry and their scavenging effects on superoxides radicals. Food Chem 64:555–559Google Scholar
  27. Karaman I, Sahin F, Gulluce M, et al (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85:231–235Google Scholar
  28. Karray-Bouraoui N, Ksouri R, Falleh H et al (2010) Effects of environment and development stage on phenolic content and antioxidant activities of Tunisian Mentha pulegium L. J Food Biochem (in press)Google Scholar
  29. Kokkini S, Karousou R, Lanaras T (1995) Essential oils of spearmint (carvone-rich) plants from the Island of Crete (Greece). Biochem Syst Ecol 23:287–297CrossRefGoogle Scholar
  30. Kothari SK, Singh UB (1995) The effect of row spacing and nitrogen fertilization on scotch spearmint (Mentha gracilis Sole). J Essent Oil Res 7:287–297Google Scholar
  31. Ksouri R, Megdiche W, Debez A et al (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249CrossRefGoogle Scholar
  32. Ksouri R, Megdiche W, Falleh H et al (2008) Influence of biological, environmental and technical factors on phenolics content and antioxidant activities of Tunisian halophytes. Compte Rendues de Biologies 331:865–873CrossRefGoogle Scholar
  33. Lis-Balchin M, Deans SG (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Bacteriol 82:759–762Google Scholar
  34. Liu RH, Eberhardt MV, Lee CY (2001) Antioxidant and antiproliferative activities of selected New York apple cultivars N. Y. Fruit Q 9(2):15–17Google Scholar
  35. Mahboubi M, Haghi G (2008) Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J Ethnopharmacol 119:325–327. doi: 10.1016/j.jep.2008.07.023 Google Scholar
  36. Marzouk B, Ben Hadj Fredj M, Chraief I et al (2008) Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L. J Food Agric & Environ 6(1):78–82Google Scholar
  37. Masotti V, Juteau F, Bessière JM et al (2003) Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J Agric Food Chem 51:7115–7121CrossRefGoogle Scholar
  38. Mastelic J, Jerkovfc I (2002) Free and glyoosldically bound volatiles of Mentha longifolia growing in Croatia. Chem Nat Compd 38:561–564CrossRefGoogle Scholar
  39. Mau JL, Chao GR, Wu KT (2001) Antioxidant properties of methalonic extracts from several ear mushrooms. J Agric Food Chem 49:5461–5467CrossRefGoogle Scholar
  40. Mimica-Dukic N, Popovic M, Jakovljevic V et al (1999) Pharmacological studies of Mentha longifolia phenolic extracts II. Hepatoprotective activity. Pharm Biolog 37(3):221–224CrossRefGoogle Scholar
  41. Mimica-Dukic N, Bozin B, Sokovic M et al (2003) Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med 69:413–419CrossRefGoogle Scholar
  42. Moreno L, Bello R, Primo-Yufera E et al (2002) Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res 16:10–13CrossRefGoogle Scholar
  43. Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111Google Scholar
  44. Naimiki M (1990) Antioxidants/antimutagens in foods. CRC Crit Rev Food Sci Nutr 29:273–300CrossRefGoogle Scholar
  45. Oudhia P (2003) Traditional and medicinal knowledge about pudina (Mentha sp. family: Labiatae) in Chhattisgarh, India. Botanical. Online,
  46. Oyedeji AO, Afolayan AJ (2006) Chemical composition and antibacterial activity of the essential oil isolated from South African Mentha longifolia (L.) L. subsp. capensis (Thunb.) Briq. JEOR 18:57–59Google Scholar
  47. Patro BS, Bauri AK, Mishra S et al (2005) Antioxidant activity of Myristica malabarica extracts and their constituents. J Agric Food Chem 53:6912–6918CrossRefGoogle Scholar
  48. Perry NB, Anderson RE, Brennan NJ et al (1999) Essential oils from Dalmation Sage (Salvia officinalis L.): variations among individuals, plant parts, seasons and sites. J Agric Food Chem 47:2048–2054CrossRefGoogle Scholar
  49. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811CrossRefGoogle Scholar
  50. Pottier-Alapetite G (1981) Flore de la Tunisie. Angiospermes-Dicotylédones Gamopétales. Publication scientifiques Tunisiennes, Tunisia, p 814Google Scholar
  51. Ramarathnam N, Osawa T, Namiki M et al (1986) Studies on the relationship between antioxidative activity of rice hull and germination ability of rice seeds. J Sci Food Agric 37:719–726CrossRefGoogle Scholar
  52. Rasooli I, Rezaei MB (2002) Bioactivity and chemical properties of essential oils from Zataria multiflora Boiss and Mentha longifolia (L.) Huds. J Essent Oil Res 14:141–146Google Scholar
  53. Ravid U, Putievsky E, Katzir I, Carmeli D, Eshel A, Schenk HP (1992) The volatile oil Artemisia judaica L. Chemotypes. Flavour Fragr J 7(2):69–72CrossRefGoogle Scholar
  54. Reynolds JEF (1996) Martindale-the extra pharmacopeia, 31st edn. Royal Pharmaceutical Society of Great Britain, LondonGoogle Scholar
  55. Sahin F, Karaman I, Gulluce M et al (2002) Evaluation of antimicrobial activities of Satureja hortensis L. J Ethnopharmacol 87:61–65 Google Scholar
  56. Santana-Rios G, Orner GA, Amantana A (2001) Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat Res 495:61–74Google Scholar
  57. Seigler DS (1998) Plant secondary metabolism. Kluwer, Boston, p 759Google Scholar
  58. Sharma S, Tyagi BR (1991) Character correlation, path coefficient and heritability analyses of essential oil and quality components in corn mint. J Genet 45:257–262Google Scholar
  59. Shasany AK, Khanuja SPS, Dhawan S et al (2000) Positive correlation between menthol content and in vitro menthol tolerance in Mentha arvensis L. cultivars. J Biosci 25(3):263–266CrossRefGoogle Scholar
  60. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  61. Small E (1997) Mentha-mint family (Lamiacae). In: Culinary Herbs. NRC Research Press, Ottawa, pp 351–372Google Scholar
  62. Sreenivasulu N, Grimm B, Wobus U et al (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442CrossRefGoogle Scholar
  63. Sun JM, Richardo-da-Silvia IS (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274CrossRefGoogle Scholar
  64. Vuddhakul V, Bhooponga P, Hayeebilana F et al (2007) Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus. Food Microbiol 24:413–418CrossRefGoogle Scholar
  65. Wannisorn B, Jarikasem S, Soontorntanasart T (1996) Antifungal activity of lemon grass oil and lemon grass oil cream. Phytother Res 10(7):551–554CrossRefGoogle Scholar
  66. Weng XC, Wang W (2000) Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem 71:489–493CrossRefGoogle Scholar
  67. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19CrossRefGoogle Scholar
  68. Younis YMH, Beshir SM (2004) Carvone-rich essential oils from Mentha longifolia (L.) Huds. ssp. Schimperi Briq. and Mentha spicata L. grown in Sudan. J Essent Oil Res 16:539–541Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hafedh Hajlaoui
    • 1
    Email author
  • Najla Trabelsi
    • 2
  • Emira Noumi
    • 1
  • Mejdi Snoussi
    • 1
  • Hanen Fallah
    • 2
  • Riadh Ksouri
    • 2
  • Amina Bakhrouf
    • 1
  1. 1.Département de Microbiologie, Faculté de PharmacieLaboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des ProduitsMonastirTunisie
  2. 2.Laboratoire d’adaptation des plantes aux stress abiotiquesCentre de biotechnologie à la technopole de Borj-Cédria (CBBC)Hammam-LifTunisie

Personalised recommendations