Advertisement

News from the antituberculosis front at two recent European meetings

  • Susanne Gola
  • Riccardo Manganelli
  • María Jesús García
  • Miguel VicenteEmail author
Meeting Report
  • 106 Downloads

Introduction

The yearly conference of the European Society of Mycobacteriology (29th Annual Congress of the European Society of Mycobacteriology—July 6–9 2008—Plovdiv, Bulgaria) attracted more than 200 participants who exchanged recent knowledge on clinical aspects of mycobacterial biology and tuberculosis infection. Open image in new window

The Saltsjöbaden-Conference on pathogenesis of mycobacterial infections (7th International Conference on the Pathogenesis of Mycobacterial Infections—June 26–29 2008—Saltsjöbaden, Stockholm, Sweden) is held every 3 years, its 2008 edition gathered some 200 participants who discussed molecular biology of mycobacterial research. Open image in new window

Here we report the highlights of both conferences (Plovdiv, abbreviated in the text as P; Saltsjöbaden, abbreviated in the text as S) combining their complementary approaches, together they offer an integrated view of the recent advances in the understanding of tuberculosis and on the possibilities to...

Keywords

Tuberculosis Mycobacteriology Pathogenesis Infectious disease Antibiotic resistance Genome evolution Diagnosis Latency Vaccines 

Notes

Acknowledgments

We acknowledge funds from the European Commission (MYCOMANCY LSHP-CT-2006-037566 to RM and MV; INNOVAC LSHP-CT-2006-03687 and TB-NOVSEC HEALTH-F3-2007-201762 to RM; and StopLATENT-TB 200999 to MJG), and from Comunidad de Madrid (COMBACT S-BIO-0260/2006 to MV). SG has been partly financed through BIOSINCEL PIFCSIC2006 from CSIC.

References

  1. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5:883–891. doi: 10.1038/nrmicro1773 CrossRefGoogle Scholar
  2. Alsteens D, Verbelen C, Dague E, Raze D, Baulard AR, Dufrene YF (2008) Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch 456:117–125. doi: 10.1007/s00424-007-0386-0 CrossRefGoogle Scholar
  3. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456. doi: 10.1016/j.mib.2003.09.001 CrossRefGoogle Scholar
  4. Appelmelk BJ, den Dunnen J, Driessen NN, Ummels R, Pak M, Nigou J, Larrouy-Maumus G, Gurcha SS, Movahedzadeh F, Geurtsen J, Brown EJ, Eysink Smeets MM, Besra GS, Willemsen PT, Lowary TL, van Kooyk Y, Maaskant JJ, Stoker NG, van der Ley P, Puzo G, Vandenbroucke-Grauls CM, Wieland CW, van der Poll T, Geijtenbeek TB, van der Sar AM, Bitter W (2008) The mannose cap of mycobacterial lipoarabinomannan does not dominate the mycobacterium–host interaction. Cell Microbiol 10:930–944. doi: 10.1111/j.1462-5822.2007.01097.x CrossRefGoogle Scholar
  5. Asensio JA, Arbués A, Pérez E, Gicquel B, Martín C (2008) Live tuberculosis vaccines based on phoP mutants: a step towards clinical trials. Expert Opin Biol Ther 8:201–211. doi: 10.1517/14712598.8.2.201 CrossRefGoogle Scholar
  6. Babb C, Keet EH, van Helden PD, Hoal EG (2007a) SP110 polymorphisms are not associated with pulmonary tuberculosis in a South African population. Hum Genet 121:521–522. doi: 10.1007/s00439-007-0335-1 CrossRefGoogle Scholar
  7. Babb C, van der Merwe L, Beyers N, Pheiffer C, Walzl G, Duncan K, van Helden P, Hoal EG (2007b) Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis (Edinb) 87:295–302. doi: 10.1016/j.tube.2007.03.001 CrossRefGoogle Scholar
  8. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322. doi: 10.1016/j.chom.2008.03.008 CrossRefGoogle Scholar
  9. Banu S, Honoré N, Saint-Joanis B, Philpott D, Prevost MC, Cole ST (2002) Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 44:9–19. doi: 10.1046/j.1365-2958.2002.02813.x CrossRefGoogle Scholar
  10. Bottger EC, Pletschette M, Andersson D (2005) Drug resistance and fitness in Mycobacterium tuberculosis infection. J Infect Dis 191:823–824. doi: 10.1086/427517 author reply 824CrossRefGoogle Scholar
  11. Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D, Demangel C, Hinds J, Neyrolles O, Butcher PD, Leclerc C, Cole ST, Brosch R (2006) Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun 74:88–98. doi: 10.1128/IAI.74.1.88-98.2006 CrossRefGoogle Scholar
  12. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, García-Pelayo C, Inwald JK, Golby P, Nuñez García J, Hewinson RG, Behr MA, Quail MA, Churcher C, Barrell BG, Parkhill J, Cole ST (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA 104:5596–5601. doi: 10.1073/pnas.0700869104 CrossRefGoogle Scholar
  13. Cáceres N, Tapia G, Ojanguren I, Altare F, Gil O, Pinto S, Vilaplana C, Cardona PJ (2009) Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis (Edinb) 89:175–182. doi: 10.1016/j.tube.2008.11.001 CrossRefGoogle Scholar
  14. Casart Y, Gamero E, Rivera-Gutierrez S, González-Y-Merchand JA, Salazar L (2008) par genes in Mycobacterium bovis and Mycobacterium smegmatis are arranged in an operon transcribed from “SigGC” promoters. BMC Microbiol 8:51CrossRefGoogle Scholar
  15. Cascioferro A, Delogu G, Colone M, Sali M, Stringaro A, Arancia G, Fadda G, Palu G, Manganelli R (2007) PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall. Mol Microbiol 66:1536–1547Google Scholar
  16. Cave MD, Eizenach KD, McDermott PF, Bates JH, Crawford JT (1991) IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes 5:73–80. doi: 10.1016/0890-8508(91)90040-Q CrossRefGoogle Scholar
  17. Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA (2005) Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol 56:1302–1313. doi: 10.1111/j.1365-2958.2005.04618.x CrossRefGoogle Scholar
  18. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G, Sow O, Gustafson P, Mwangulu F, van Helden P, Fine P, Hoal EG, Hill AV (2008) Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178:203–207. doi: 10.1164/rccm.200710-1554OC CrossRefGoogle Scholar
  19. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49. doi: 10.1016/j.cell.2008.11.014 CrossRefGoogle Scholar
  20. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honoré N, Marchal G, Jiskoot W, England P, Cole ST, Brosch R (2007) ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 189:6028–6034. doi: 10.1128/JB.00469-07 CrossRefGoogle Scholar
  21. Dolezal R, Waisser K, Petrlikova E, Kunes J, Kubicova L, Machacek M, Kaustova J, Dahse HM (2009) N-benzylsalicylthioamides: highly active potential antituberculotics. Arch Pharm (Weinheim) 342:113–119. doi: 10.1002/ardp.200800032 CrossRefGoogle Scholar
  22. Fang Z, Morrison N, Watt B, Doig C, Forbes KJ (1998) IS6110 transposition and evolutionary scenario of the direct repeat locus in a group of closely related Mycobacterium tuberculosis strains. J Bacteriol 180:2102–2109Google Scholar
  23. Fernandez P, Saint-Joanis B, Barilone N, Jackson M, Gicquel B, Cole ST, Alzari PM (2006) The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol 188:7778–7784. doi: 10.1128/JB.00963-06 CrossRefGoogle Scholar
  24. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martín C, Leclerc C, Cole ST, Brosch R (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33. doi: 10.1371/journal.ppat.0040033 CrossRefGoogle Scholar
  25. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM (2006) Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:2869–2873. doi: 10.1073/pnas.0511240103 CrossRefGoogle Scholar
  26. García-Pérez BE, Hernández-González JC, García-Nieto S, Luna-Herrera J (2008) Internalization of a non-pathogenic mycobacteria by macropinocytosis in human alveolar epithelial A549 cells. Microb Pathog 45:1–6. doi: 10.1016/j.micpath.2008.01.009 CrossRefGoogle Scholar
  27. Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75. doi: 10.1371/journal.pmed.0050075 CrossRefGoogle Scholar
  28. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8:843–849Google Scholar
  29. Gonzalo-Asensio J, Maia C, Ferrer NL, Barilone N, Laval F, Soto CY, Winter N, Daffé M, Gicquel B, Martín C, Jackson M (2006) The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281:1313–1316. doi: 10.1074/jbc.C500388200 CrossRefGoogle Scholar
  30. Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernández-Pando R, Thole J, Behr M, Gicquel B, Martín C (2008a) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 3:e3496. doi: 10.1371/journal.pone.0003496 CrossRefGoogle Scholar
  31. Gonzalo-Asensio J, Soto CY, Arbués A, Sancho J, del Carmen Menéndez M, Garcia MJ, Gicquel B, Martín C (2008b) The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J Bacteriol 190:7068–7078. doi: 10.1128/JB.00712-08 CrossRefGoogle Scholar
  32. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655. doi: 10.1046/j.1365-2958.1999.01383.x CrossRefGoogle Scholar
  33. Hardy BJ, Séguin B, Ramesar R, Singer PA, Daar AS (2008) South Africa: from species cradle to genomic applications. Nat Rev Genet 9(Suppl 1):S19–S23. Correction: Hardy BJ, Séguin B, Ramesar R, Singer PA, Daar AS (2009). Nat Rev Genet 10:68. doi: 10.1038/nrg2503 CrossRefGoogle Scholar
  34. Harth G, Horwitz MA (2003) Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun 71:456–464. doi: 10.1128/IAI.71.1.456-464.2003 CrossRefGoogle Scholar
  35. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311. doi: 10.1371/journal.pbio.0060311 CrossRefGoogle Scholar
  36. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105:3963–3967. doi: 10.1073/pnas.0709530105 CrossRefGoogle Scholar
  37. Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L (2007) Metronidazole plus rifampin sterilizes long-term dormant Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1537–1540. doi: 10.1128/AAC.01468-06 CrossRefGoogle Scholar
  38. Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2’-O-methylations in 16S and 23S rRNAs. Mol Cell 23:173–182. doi: 10.1016/j.molcel.2006.05.044 CrossRefGoogle Scholar
  39. Jones G, Dyson P (2006) Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J Bacteriol 188:7470–7476. doi: 10.1128/JB.00800-06 CrossRefGoogle Scholar
  40. Kamath AT, Fruth U, Brennan MJ, Dobbelaer R, Hubrechts P, Ho MM, Mayner RE, Thole J, Walker KB, Liu M, Lambert PH (2005) New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development. Vaccine 23:3753–3761. doi: 10.1016/j.vaccine.2005.03.001 CrossRefGoogle Scholar
  41. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914Google Scholar
  42. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV (2005) The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174. doi: 10.1111/j.1365-2958.2005.04524.x CrossRefGoogle Scholar
  43. Klimešová V, Svoboda M, Waisser K, Pour M, Kaustova J (1999) Synthesis and antimicrobial activity of new 4-(benzylsulfanyl)pyridine derivatives. Collect Czech Chem Commun 64:417–434. doi: 10.1135/cccc19990417 CrossRefGoogle Scholar
  44. Lai CC, Lee LN, Chang YL, Lee YC, Ding LW, Hsueh PR (2005) Pulmonary infection due to Mycobacterium marinum in an immunocompetent patient. Clin Infect Dis 40:206–208. doi: 10.1086/426693 CrossRefGoogle Scholar
  45. Lesley R, Ramakrishnan L (2008) Insights into early mycobacterial pathogenesis from the zebrafish. Curr Opin Microbiol 11:277–283. doi: 10.1016/j.mib.2008.05.013 CrossRefGoogle Scholar
  46. Lipin MY, Stepanshina VN, Shemyakin IG, Shinnick TM (2007) Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect 13:620–626. doi: 10.1111/j.1469-0691.2007.01711.x CrossRefGoogle Scholar
  47. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282Google Scholar
  48. Makarov V, Manina G, Mikusova K, Möllmann U, Ryabova O, Saint-Joanis B, Dhar N, Pasca MR, Buroni S, Lucarelli AP, Milano A, De Rossi E, Belanova M, Bobovska A, Dianiskova P, Kordulakova J, Sala C, Fullam E, Schneider P, Mckinney JD, Brodin P, Christophe T, Waddell S, Butcher P, Albrethsen J, Rosenkrands I, Brosch R, Nandi V, Bharath S, Gaonkar S, Shandil RK, Balasubramanian V, Balganesh T, Tyagi S, Grosset J, Riccardi G, Cole ST (2009) Benzothiazidones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804. doi: 10.1126/science.1171583 CrossRefGoogle Scholar
  49. Martín C, Williams A, Hernández-Pando R, Cardona PJ, Gormley E, Bordat Y, Soto CY, Clark SO, Hatch GJ, Aguilar D, Ausina V, Gicquel B (2006) The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24:3408–3419. doi: 10.1016/j.vaccine.2006.03.017 CrossRefGoogle Scholar
  50. McKeigue PM (1998) Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet 63:241–251. doi: 10.1086/301908 CrossRefGoogle Scholar
  51. Möbius P, Luyven G, Hotzel H, Köhler H (2008) High genetic diversity among Mycobacterium avium subsp. paratuberculosis strains from German cattle herds shown by combination of IS900 restriction fragment length polymorphism analysis and mycobacterial interspersed repetitive unit-variable-number tandem-repeat typing. J Clin Microbiol 46:972–981. doi: 10.1128/JCM.01801-07 CrossRefGoogle Scholar
  52. Mokrousov I, Jiao WW, Sun GZ, Liu JW, Valcheva V, Li M, Narvskaya O, Shen AD (2006) Evolution of drug resistance in different sublineages of Mycobacterium tuberculosis Beijing genotype. Antimicrob Agents Chemother 50:2820–2823. doi: 10.1128/AAC.00324-06 CrossRefGoogle Scholar
  53. Möller M, Nebel A, Valentonyte R, van Helden PD, Schreiber S, Hoal EG (2009) Investigation of chromosome 17 candidate genes in susceptibility to TB in a South African population. Tuberculosis (Edinb) 89:189–194. doi: 10.1016/j.tube.2008.10.001 CrossRefGoogle Scholar
  54. O’Hare H, Juillerat A, Dianiskova P, Johnsson K (2008) A split-protein sensor for studying protein–protein interaction in mycobacteria. J Microbiol Methods 73:79–84. doi: 10.1016/j.mimet.2008.02.008 CrossRefGoogle Scholar
  55. Palomino JC, Martin A, Von Groll A, Portaels F (2008) Rapid culture-based methods for drug-resistance detection in Mycobacterium tuberculosis. J Microbiol Methods 75:161–166. doi: 10.1016/j.mimet.2008.06.015 CrossRefGoogle Scholar
  56. Patiño S, Alamo L, Cimino M, Casart Y, Bartoli F, García MJ, Salazar L (2008) Autofluorescence of mycobacteria as a tool for detection of Mycobacterium tuberculosis. J Clin Microbiol 46:3296–3302. doi: 10.1128/JCM.02183-08 CrossRefGoogle Scholar
  57. Pérez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martín C (2001) An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41:179–187. doi: 10.1046/j.1365-2958.2001.02500.x CrossRefGoogle Scholar
  58. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, Daffé M, Emile JF, Marchou B, Cardona PJ, de Chastellier C, Altare F (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204. doi: 10.1371/journal.ppat.1000204 CrossRefGoogle Scholar
  59. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717. doi: 10.1046/j.1365-2958.2002.03237.x CrossRefGoogle Scholar
  60. Reece ST, Kaufmann SH (2008) Rational design of vaccines against tuberculosis directed by basic immunology. Int J Med Microbiol 298:143–150. doi: 10.1016/j.ijmm.2007.07.004 CrossRefGoogle Scholar
  61. Reich D, Patterson N (2005) Will admixture mapping work to find disease genes? Philos Trans R Soc Lond B Biol Sci 360:1605–1607. doi: 10.1098/rstb.2005.1691 CrossRefGoogle Scholar
  62. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J, Williamson RA, Carr MD (2005) Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–2498. doi: 10.1038/sj.emboj.7600732 CrossRefGoogle Scholar
  63. Rivero A, Márquez M, Santos J, Pinedo A, Sánchez MA, Esteve A, Samper S, Martín C (2001) High rate of tuberculosis reinfection during a nosocomial outbreak of multidrug-resistant tuberculosis caused by Mycobacterium bovis strain B. Clin Infect Dis 32:159–161. doi: 10.1086/317547 CrossRefGoogle Scholar
  64. Singh A, Mai D, Kumar A, Steyn AJ (2006) Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association. Proc Natl Acad Sci USA 103:11346–11351. doi: 10.1073/pnas.0602817103 CrossRefGoogle Scholar
  65. Soto CY, Menéndez MC, Pérez E, Samper S, Gómez AB, García MJ, Martín C (2004) IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 42:212–219. doi: 10.1128/JCM.42.1.212-219.2004 CrossRefGoogle Scholar
  66. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510. doi: 10.1128/JCM.01392-06 CrossRefGoogle Scholar
  67. Székely R, Wáczek F, Szabadkai I, Németh G, Hegymegi-Barakonyi B, Eros D, Szokol B, Pató J, Hafenbradl D, Satchell J, Saint-Joanis B, Cole ST, Orfi L, Klebl BM, Kéri G (2008) A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling. Immunol Lett 116:225–231. doi: 10.1016/j.imlet.2007.12.005 CrossRefGoogle Scholar
  68. Tobin DM, Ramakrishnan L (2008) Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10:1027–1039. doi: 10.1111/j.1462-5822.2008.01133.x CrossRefGoogle Scholar
  69. Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bennett S, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Kramnik I, Hill AV (2006) Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci USA 103:10364–10368. doi: 10.1073/pnas.0603340103 CrossRefGoogle Scholar
  70. Tullius MV, Harth G, Horwitz MA (2003) Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71:3927–3936. doi: 10.1128/IAI.71.7.3927-3936.2003 CrossRefGoogle Scholar
  71. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298. doi: 10.1016/j.cell.2007.05.059 CrossRefGoogle Scholar
  72. van Ingen J, Boeree MJ, Wright A, van der Laan T, Dekhuijzen PN, van Soolingen D (2008) Second-line drug resistance in multidrug-resistant tuberculosis cases of various origins in the Netherlands. Int J Tuberc Lung Dis 12:1295–1299Google Scholar
  73. Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, Cole ST, Zimny-Arndt U, Jungblut PR, Cervenansky C, Alzari PM (2005) Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 350:953–963. doi: 10.1016/j.jmb.2005.05.049 CrossRefGoogle Scholar
  74. Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H (2007) Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta 1768:1717–1726. doi: 10.1016/j.bbamem.2007.04.003 CrossRefGoogle Scholar
  75. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffé M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330. doi: 10.1111/j.1365-2958.2006.05102.x CrossRefGoogle Scholar
  76. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069Google Scholar
  77. Wehenkel A, Fernandez P, Bellinzoni M, Catherinot V, Barilone N, Labesse G, Jackson M, Alzari PM (2006) The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett 580:3018–3022. doi: 10.1016/j.febslet.2006.04.046 CrossRefGoogle Scholar
  78. Wehenkel A, Bellinzoni M, Graña M, Duran R, Villarino A, Fernandez P, Andre-Leroux G, England P, Takiff H, Cervenansky C, Cole ST, Alzari PM (2008) Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim Biophys Acta 1784:193–202Google Scholar
  79. Welin A, Winberg ME, Abdalla H, Sarndahl E, Rasmusson B, Stendahl O, Lerm M (2008) Incorporation of Mycobacterium tuberculosis lipoarabinomannan into macrophage membrane rafts is a prerequisite for the phagosomal maturation block. Infect Immun 76:2882–2887. doi: 10.1128/IAI.01549-07 CrossRefGoogle Scholar
  80. Wolucka BA (2008) Biosynthesis of d-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 275:2691–2711. doi: 10.1111/j.1742-4658.2008.06395.x CrossRefGoogle Scholar
  81. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680. doi: 10.1128/JB.01919-07 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Susanne Gola
    • 1
  • Riccardo Manganelli
    • 2
  • María Jesús García
    • 3
  • Miguel Vicente
    • 1
    Email author
  1. 1.Centro Nacional de BiotecnologíaCSICMadridSpain
  2. 2.Department of Histology, Microbiology and Medical BiotechnologiesUniversità di PadovaPaduaItaly
  3. 3.Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations