World Journal of Microbiology and Biotechnology

, Volume 25, Issue 9, pp 1519–1528

Autochthonous bioaugmentation and its possible application to oil spills

  • Reia Hosokawa
  • Motonori Nagai
  • Masaaki Morikawa
  • Hidetoshi Okuyama
Review

Abstract

Bioaugmentation for oil spills is a much more promising technique than is biostimulation. However, the effectiveness of bioaugmentation is variable, because the survival and the xenobiotic-degrading ability of introduced microorganisms are highly dependent on environmental conditions. As an alternative, autochthonous bioaugmentation (ABA) is proposed to overcome these difficulties. The ABA method is like a ready-made bioaugmentation technology. In ABA, microorganisms indigenous to the contaminated site or predicted contamination site that are well-characterized and potentially capable of degrading oils are used, and these microorganisms should be enriched under conditions where bioaugmentation will be conducted. It is possible to obtain information in advance on the chemical and physical characteristics of potential oil spill sites and of oils that might be spilled. The application of ABA in the coastal areas of Hokkaido Prefecture, Japan, is considered here, because Hokkaido is located south of Sakhalin Island, Russia, where development of oil fields is in progress. If oil spills in this region were well characterized in advance, ABA could be a feasible technology in the near future.

Keywords

Autochthonous bioaugmentation Bioremediation Enrichment cultivation Oil spill Reinoculation Sakhalin oil field 

References

  1. Aota M (2002) Sea ice and global environment (original title is in Japanese). In: Murakami T (ed) Sakhalin offshore oil and gas development and environment protection. Hokkaido University Press, Sapporo, pp 141–160 (in Japanese)Google Scholar
  2. Atagana HI (2004) Biodegradation of phenol, o-cresol, m-cresol and p-cresol by indigenous soil fungi in soil contaminated with cresote. World J Microbiol Biotechnol 20:851–858. doi:10.1007/s11274-004-9010-z CrossRefGoogle Scholar
  3. Bathe S, Schwarzenbeck N, Hauser M (2005) Plasmid-mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Lett Appl Microbiol 41:242–247. doi:10.1111/j.1472-765X.2005.01754.x CrossRefGoogle Scholar
  4. Belloso CO (2003a) In situ bioremediation of hydrocarbon-contaminated soil by autochthonous microorganisms: a full-scale project. In: Magar VS, Kelley ME (eds) Proceedings of the seventh international in situ and on-site bioremediation symposium 2003, Baltelle Press, Columbus, paper O-08Google Scholar
  5. Belloso CO (2003b) Performance improvement of an urban wastewater stabilization ponds system by bioaugmented autochthonous bacteria: a case study. In: Magar VS, Kelley ME, (eds) Proceedings of the seventh international in situ and on-site bioremediation symposium 2003, Baltelle Press, Colombus, paper N-03Google Scholar
  6. Blumenroth P, Wagner-Döbler I (1998) Survival of inoculant in polluted sediments: effect of strain origin and carbon source competition. Microb Ecol 35:279–288. doi:10.1007/s002489900083 CrossRefGoogle Scholar
  7. Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190. doi:10.1046/j.1462-2920.2000.00091.x CrossRefGoogle Scholar
  8. Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222Google Scholar
  9. D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36. doi:10.1128/AEM.72.1.28-36.2006 CrossRefGoogle Scholar
  10. Dott W, Feuduejer D, Kampfer, Scgkeubunger H, Strechel (1989) Comparison of autochthonous bacteria to their effectiveness in fuel oil degradation. J Ind Microbiol 4:365–374. doi:10.1007/BF01569538 CrossRefGoogle Scholar
  11. Fantroussi SE, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275. doi:10.1016/j.mib.2005.04.011 CrossRefGoogle Scholar
  12. Garon D, Sage L, Seigle-Murandi F (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorine degradation in soil slurry. Biodegradation 15:1–8. doi:10.1023/B:BIOD.0000009934.87627.91 CrossRefGoogle Scholar
  13. Gentry TJ, Josephson KL, Pepper IL (2004a) Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Biodegradation 15:67–75. doi:10.1023/B:BIOD.0000009974.13147.82 CrossRefGoogle Scholar
  14. Gentry TJ, Rensing C, Pepper IL (2004b) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494. doi:10.1080/10643380490452362 CrossRefGoogle Scholar
  15. Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469Google Scholar
  16. Gurijala KR, Alexander M (1990) Explanation for the decline of bacteria introduced into lake water. Microb Ecol 20:231–244. doi:10.1007/BF02543879 CrossRefGoogle Scholar
  17. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753. doi:10.1046/j.1468-2920.2003.00468.x CrossRefGoogle Scholar
  18. Hosokawa R, Nagai M, Kondo H, Teragaki J, Okuyama H (2009) Application of autochthonous bioaugmentation in cold regions of Japan. In: Columbus F (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers, Inc., Hauppauge, New York (in press). ISBN:978-1-60741-791-0Google Scholar
  19. Kasai Y, Kishira H, Sasaki T, Syotsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147. doi:10.1046/j.1462-2920.2002.00275.x CrossRefGoogle Scholar
  20. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethane. Environ Sci Technol 36:5106–5116. doi:10.1021/es0255711 CrossRefGoogle Scholar
  21. McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osbom AM, Timmis KN, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571CrossRefGoogle Scholar
  22. Møller J, Gaarn H, Steckel T, Wedebye B, Westermann P (1995) Inhibitory effects on degradation of diesel oil in soil-microcosms by a commerecial bioaugmentation product. Bull Environ Contam Toxicol 54:913–918. doi:10.1007/BF00197978 CrossRefGoogle Scholar
  23. Murakami T (2002) Sakhalin offshore oil and gas development (original title is in Japanese). In: Murakami T (ed) Sakhalin offshore oil and gas development and environmental protection, Hokkaido University Press, Sapporo, pp 3–40 (in Japanese)Google Scholar
  24. Nagai M (2009) Study on autochthonous bioaugmentation tests predicting the contamination of Hokkaido coasts by crude oil (in Japanese with English Abstract). Master’s thesis, Graduate School of Environmental Science, Hokkaido University, JapanGoogle Scholar
  25. Nancharaiah YV, Joshi HM, Hausner M, Venugopalam VP (2008) Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere 71:30–35. doi:10.1016/j.chemosphere.2007.10.062 CrossRefGoogle Scholar
  26. Oshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107(C11):3195. doi:10.1029/2001JC001005 CrossRefGoogle Scholar
  27. Otte MP, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R (1994) Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol/creosote contaminated soils. Appl Microbiol Biotechnol 40:926–932. doi:10.1007/BF00174001 CrossRefGoogle Scholar
  28. Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegradation 50:45–52. doi:10.1016/j.ibiod.2004.01.003 CrossRefGoogle Scholar
  29. Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168. doi:10.1016/S0960-8524(03)00114-7 CrossRefGoogle Scholar
  30. Saeki H, Otsuka N (2002) Assumption of the trace of drifting spilled oil and the method for its recovery (original title is in Japanese). In: Murakami T (ed) Sakhalin offshore oil and gas development and environment protection. Hokkaido University Press, Sapporo, pp 189–204 (in Japanese)Google Scholar
  31. Sayler GS, Ripp S (2000) Field application of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289. doi:10.1016/S0958-1669(00)00097-5 CrossRefGoogle Scholar
  32. Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesman A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004. doi:10.1038/nbt1232 CrossRefGoogle Scholar
  33. Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Owaki M, Furuya K (2005) In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Res 39:2438–2444. doi:10.1016/j.watres.2005.04.041 CrossRefGoogle Scholar
  34. Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915. doi:10.1111/j.1462-2920.2005.00804.x CrossRefGoogle Scholar
  35. Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787Google Scholar
  36. Tsutsumi H, Kono M, Takai K, Manabe T, Haraguchi M, Yamamoto I, Oppenheimer C (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan III. Field test of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324. doi:10.1016/S0025-326X(99)00220-9 CrossRefGoogle Scholar
  37. Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2006a) Verification of degradation of diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms. Curr Microbiol 52:182–185. doi:10.1007/s00284-005-0133-8 CrossRefGoogle Scholar
  38. Ueno A, Ito Y, Yamamoto Y, Yumoto I, Okuyama H (2006b) Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium, Pseudomonas aeruginosa strain WatG. J Basic Microbiol 46:310–317. doi:10.1002/jobm.200510116 CrossRefGoogle Scholar
  39. Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isoltion and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745. doi:10.1007/s11274-007-9423-6 CrossRefGoogle Scholar
  40. Uto S, Tamura K, Shinoda H (1995) On the measurement of Okhotsk sea ice by patrol ship Soya. In: Proceedings of NIPR symposium on polar meteorology and glaciology 9, National Institute of Polar research, Tokyo, p 200Google Scholar
  41. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630Google Scholar
  42. van Beilen JB, Marin MM, Smits TH, Röthlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273. doi:10.1111/j.1462-2920.2004.00567.x CrossRefGoogle Scholar
  43. van Homme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. doi:10.1128/MMBR.67.4.503-549.2003 CrossRefGoogle Scholar
  44. van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 67:121–135Google Scholar
  45. Vecchioli GI, DelPanno MT, Painceira MT (1990) Use of selected autochthonous soil bacteria to enhance degradation of hydrocarbons in soil. Environ Pollut 67:249–258. doi:10.1016/0269-7491(90)90190-N CrossRefGoogle Scholar
  46. Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316. doi:10.1016/S0958-1669(96)80036-X CrossRefGoogle Scholar
  47. Vogel TM, Walter MV (2001) Bioaugmentation. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington DC, pp 952–959Google Scholar
  48. Watanabe K, Teramoto M, Harayama S (2002) Stable augmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ Microbiol 4:577–583. doi:10.1046/j.1462-2920.2002.00342.x CrossRefGoogle Scholar
  49. Weber WJ Jr, Corseuil HX (1994) Inoculation of contaminated subsurface soils with enriched indigenous microbes to enhance bioremediation rates. Water Res 28:1407–1414. doi:10.1016/0043-1354(94)90308-5 CrossRefGoogle Scholar
  50. Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil and lubricating oil. Curr Microbiol 49:415–422. doi:10.1007/s00284-004-4347-y CrossRefGoogle Scholar
  51. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Reia Hosokawa
    • 1
  • Motonori Nagai
    • 1
  • Masaaki Morikawa
    • 1
    • 2
  • Hidetoshi Okuyama
    • 1
    • 2
  1. 1.Course in Environmental Molecular Biology and Microbial Ecology, Division of Biosphere Science, Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Laboratory of Environmental Molecular Biology, Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations