World Journal of Microbiology and Biotechnology

, Volume 25, Issue 8, pp 1471–1477

Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates

  • Mohammad Ali Malboobi
  • Parviz Owlia
  • Mandana Behbahani
  • Elaheh Sarokhani
  • Sara Moradi
  • Bagher Yakhchali
  • Ali Deljou
  • Kambiz Morabbi Heravi
Original Paper

Abstract

Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.

Keywords

Phosphate solubilization Pantoea agglomerans Microbacterium laevaniformans and Pseudomonas putida Biofertilizer 

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  2. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje J (2008) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145. doi:10.1093/nar/gkn879
  3. Fisk CH, Sabbarow Y (1925) A colorimetric determination of phosphate. J Biol Chem 66:375–400Google Scholar
  4. Garcia MC, Diez JA, Vallejo A, Garcia L, Cartagena MC (1997) Effects of applying soluble and coated phosphate fertilizer on phosphate availability in calcareous soils and on P absorpion by a Rye-Grass crop. J Agric Food Chem 45:1931–1936. doi:10.1021/jf960600a CrossRefGoogle Scholar
  5. Givskov M, Eberl L, Moller S, Poulsen LK, Molin S (1994) Response to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection cell shape and macromolecular content. J Bacteriol 176:7–14Google Scholar
  6. Hector M, Vicente S, Josep U, Antonio JR, Sonia M (2008) Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int J Food Microbiol 122:61–67. doi:10.1016/j.ijfoodmicro.2007.11.056 CrossRefGoogle Scholar
  7. Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate solubilizing bacteria as inoculant for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568. doi:10.1051/agro:2001145 CrossRefGoogle Scholar
  8. Illemer P, Schinner F (1995) Solubilization of inorganic calcium phosphate solubilization mechanisms. Soil Biol Biochem 27:257–263. doi:10.1016/0038-0717(94)00190-C CrossRefGoogle Scholar
  9. Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270. doi:10.1016/0038-0717(94)00205-F CrossRefGoogle Scholar
  10. Johri JK, Surange S, Natiyal CS (1999) Occurrence of salt pH and temperature-tolerant phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93. doi:10.1007/s002849900424 CrossRefGoogle Scholar
  11. Malboobi MA, Behbahani M, Madanin H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol. doi:10.1007/s11274-009-0038-y
  12. Morabbi Heravi K, Eftekhar F, Yakhchali B, Tabandeh F (2008) Isolation and identification of a lipase producing Bacillus sp from soil. Pak J Biol Sci 11(5):740–745CrossRefGoogle Scholar
  13. Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926. doi:10.1038/sj.embor.7400263 CrossRefGoogle Scholar
  14. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296. doi:10.1111/j.1574-6968.2000.tb08910.x CrossRefGoogle Scholar
  15. Palleroni JN (1984) Pseudomonadacea. In: Kreig NR, Holt Jg (eds) Bergay’s manual systematic bacteriology, Vol 1. Williams and Wilkins, Baltimor, MDGoogle Scholar
  16. Rao A, Venkateshvarlu B, Kaul P (1982) Isolation of phosphate dissolving soil Actinomycetes. Curr Sci 51:117–118Google Scholar
  17. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2 CrossRefGoogle Scholar
  18. Sandra AI, Wright I, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292. doi:10.1128/AEM.67.1.284-292.2001 CrossRefGoogle Scholar
  19. Sneath PHA (1986) Endospore-forming gram-positive rods and cocci. In: Kreig NR, Holt Jg (eds) Bergay’s Manual Systematic Bacteriology, vol 2. Williams and Wilkins, Baltimor, MDGoogle Scholar
  20. Somers E, Vanderleyden J (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240. doi:10.1080/10408410490468786 CrossRefGoogle Scholar
  21. Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphate by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210. doi:10.1016/j.biortech.2005.02.021 CrossRefGoogle Scholar
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mohammad Ali Malboobi
    • 1
    • 2
  • Parviz Owlia
    • 3
  • Mandana Behbahani
    • 4
  • Elaheh Sarokhani
    • 1
  • Sara Moradi
    • 1
  • Bagher Yakhchali
    • 2
  • Ali Deljou
    • 4
  • Kambiz Morabbi Heravi
    • 2
  1. 1.Applied Microbiology Research GroupJahad Daneshgahi, Tehran UnitTehranI.R. Iran
  2. 2.National Institute of Genetic Engineering and BiotechnologyTehranI.R. Iran
  3. 3.Department of MicrobiologyShahed UniversityTehranI.R. Iran
  4. 4.Department of Biotechnology, Faculty of AgricultureBu-Ali-Sina UniversityHamedanI.R. Iran

Personalised recommendations