World Journal of Microbiology and Biotechnology

, Volume 25, Issue 2, pp 347–353 | Cite as

Members of the Candidate Division OP10 are spread in a variety of environments

Short Communication

Abstract

Our planet holds a huge bacterial diversity. Most of these bacteria have only been detected by their 16S rRNA gene sequences remaining to be cultured. Many are classified within Candidate Divisions. One them is the Candidate Division OP10. Analysis of environmental 16S rRNA gene sequences available in public repositories revealed the existence of numerous sequences clustering within the Candidate Division OP10 but currently unclassified or assigned to other bacterial phyla. Newly proposed 16S rRNA sequences multiply several fold the reported sequences for the Candidate Division OP10. This study showed that the Candidate Division OP10 is a diverse and broadly distributed bacterial phylum and represents a stable microbial component in different natural environments.

Keywords

Candidate Division OP10 Bacterial diversity Public repositories DNA databases 16S rRNA molecular survey 

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  2. Ashelford KE, Chuzhanova NA, Fry JC et al (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736. doi:10.1128/AEM.71.12.7724-7736.2005 CrossRefGoogle Scholar
  3. Benson DA, Karsh-Mizrachi I, Lipman DJ et al (2000) GenBank. Nucleic Acids Res 28:15–18. doi:10.1093/nar/28.1.15 CrossRefGoogle Scholar
  4. Bond PL, Hugenholtz P, Keller J et al (1995) Bacterial community structure of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916Google Scholar
  5. Chow ML, Radomski CC, McDermott JM et al (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357. doi:10.1111/j.1574-6941.2002.tb01024.x CrossRefGoogle Scholar
  6. Cole J, Chai B, Marsh T (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443. doi:10.1093/nar/gkg039 CrossRefGoogle Scholar
  7. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499. doi:10.1073/pnas.142680199 CrossRefGoogle Scholar
  8. Gonzalez JM, Zimmermann J, Saiz-Jimenez C (2005) Evaluating putative chimeric sequences from PCR-amplified products. Bioinformatics 21:333–337. doi:10.1093/bioinformatics/bti008 CrossRefGoogle Scholar
  9. Hugenholtz P, Huber T (2003) Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53:289–293. doi:10.1099/ijs.0.02441-0 CrossRefGoogle Scholar
  10. Hugenholtz P, Goebel BM, Pace N (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774Google Scholar
  11. Hughes JB, Hellmann JJ, Ricketts TH et al (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406. doi:10.1128/AEM.67.10.4399-4406.2001 CrossRefGoogle Scholar
  12. Inagaki F, Nunoura T, Nakagawa S et al (2005) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc Natl Acad Sci USA 103:2815–2820. doi:10.1073/pnas.0511033103 CrossRefGoogle Scholar
  13. Kanakratana P, Chanapan S, Pootanakit K (2004) Diversity and abundance of bacteria and archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44:430–444. doi:10.1002/jobm.200410388 CrossRefGoogle Scholar
  14. Kanz C, Aldebert P, Althorpe N et al (2005) The EMBL nucleotide sequence database. Nucleic Acids Res 33:D29–D33. doi:10.1093/nar/gki098 CrossRefGoogle Scholar
  15. Lesaulnier C, Papamichail D, McCorkle S et al (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941. doi:10.1111/j.1462-2920.2007.01512.x CrossRefGoogle Scholar
  16. Ley RE, Harris JK, Wilcox J et al (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695. doi:10.1128/AEM.72.5.3685-3695.2006 CrossRefGoogle Scholar
  17. Liles MR, Manske BF, Bintrim SB et al (2003) A census of rRNA genes and linked genomic sequences within soil metagenomic library. Appl Environ Microbiol 69:2684–2691. doi:10.1128/AEM.69.5.2684-2691.2003 CrossRefGoogle Scholar
  18. Ludwig W, Strunk O, Klugbauer S et al (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568. doi:10.1002/elps.1150190416 CrossRefGoogle Scholar
  19. Nogales B, Moore ERB, Llobet-Brossa E et al (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884. doi:10.1128/AEM.67.4.1874-1884.2001 CrossRefGoogle Scholar
  20. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864 CrossRefGoogle Scholar
  21. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. doi:10.1146/annurev.micro.57.030502.090759 CrossRefGoogle Scholar
  22. Stott MB, Crowe MA, Mountain BW et al (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041. doi:10.1111/j.1462-2920.2008.01621.x CrossRefGoogle Scholar
  23. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969Google Scholar
  24. Sugawara H, Ogasawara O, Okubo K (2008) DDBJ with new system and face. Nucleic Acids Res 36:D22–D24. doi:10.1093/nar/gkm889 CrossRefGoogle Scholar
  25. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix-choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  26. Urbach E, Vergin KL, Young L et al (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46:557–572Google Scholar
  27. von Wintzingerode F, Slent B, Hegemann W (1999) Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65:283–286Google Scholar
  28. Walker JJ, Pace NR (2007) Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504. doi:10.1128/AEM.02656-06 CrossRefGoogle Scholar
  29. Wu X, Xi W, Ye W et al (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol Ecol 61:85–96. doi:10.1111/j.1574-6941.2007.00326.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Instituto de Recursos Naturales y AgrobiologiaIRNAS-CSICSevillaSpain

Personalised recommendations