Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5

  • 250 Accesses

  • 15 Citations

Abstract

In a screening program for isolation of thermophilic lipase-producing bacteria, a number of thermophilic bacteria were isolated from desert soil from Baltim, Egypt. Among 55 isolates, a potent bacterial candidate (starin-5) was characterized and identified by biochemical and PCR techniques, based on 16S rRNA sequencing. Phylogenetic analysis revealed its closeness to geobacilli especially the thermophilic Geobacillus stearothermophilus with optimal growth and lipolytic enzyme activity at 60°C and pH 7.0. An inducible nature of lipolytic enzyme synthesis using glycerol and glucose was demonstrated. Approximately, 94–100% of the original activity was retained due to thermal stability of the crude enzyme after heat treatment for 15 min at 30–60°C. The enzyme retained 84.84% of its original activity during incubation at 70°C (pH 8.0) for 15 min. Lipase enzyme from G. stearothermophilus strain-5 was immobilized on various carriers and the most suitable carrier was chitin that showed 73.03% of activity yield.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdel-Fattah YR (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box–Behnken experimental design. Biotechnol Lett 24:1217–1222. doi:10.1023/A:1016167416712

  2. Abdel-Fattah Y, Soliman N, Gaballa A, Sabry S, El-Diwani A (2002) Lipase production from a thermophilic Bacillus sp.: application of Plackett–Burman design for evaluating culture conditions affecting enzyme formation. Acta Microbiol Pol 51:353–366

  3. Becker P, Abu-Reesh I, Markossian S, Antranikian G, Markl H (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl Microbiol Biotechnol 48:184–190. doi:10.1007/s002530051036

  4. Bernhard K, Schrempf H, Goebel W (1978) Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol 133:897–903

  5. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

  6. Dominguez A, Sanroman A, Fuciños P, R’ua ML, Pastrana L, Longo MA (2004) Quantification of intra- and extra-cellular thermophilic lipase/esterase production by Thermus sp. Biotechnol Lett 26:705–708. doi:10.1023/B:BILE.0000024092.27943.75

  7. Dominguez A, Pastrana L, Longo MA, Rua ML, Sanroman MA (2005) Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank bioreactor. Biochem Eng J 26:95–99. doi:10.1016/j.bej.2005.04.006

  8. Dosanjh NS, Kaur J (2002) Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol Appl Biochem 36:7–12. doi:10.1042/BA20010070

  9. Eltaweel M, Rahman RNZRA, Salleh AB, Basri M (2005) An organic solvent-stable lipase from Bacillus sp. strain 42. Ann Microbiol 55:187–192

  10. Gupta R, Gupta N, Rathi P (2004a) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781. doi:10.1007/s00253-004-1568-8

  11. Gupta N, Mehra G, Gupta R (2004b) A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett–Burman design and by response surface methodology. Can J Microbiol 50:361–368. doi:10.1139/w04-022

  12. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34. doi:10.1016/S0960-8524(03)00033-6

  13. Kambourova M, Kirilova N, Mandeva DerekovaRA (2003) Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7. J Mol Catal B Enzym 22:307–313. doi:10.1016/S1381-1177(03)00045-6

  14. Lee DW, Koh YS, Kim K, Kim B, Choi H, Kim D, Suhartono M, Pyun Y (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400. doi:10.1111/j.1574-6968.1999.tb08754.x

  15. Li H, Zhang X (2005) Characterization of thermostable lipase thermophilic Geobacillus sp. TW1. Protein Expr Purif 42:153–159. doi:10.1016/j.pep.2005.03.011

  16. Nawani N, Kaur J (2000) Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Mol Cell Biochem 206:91–96. doi:10.1023/A:1007047328301

  17. Nawani N, Khurana J, Kaur J (2006) A thermostable lipolytic enzyme from a thermophilic Bacillus sp.: purification and characterization. Mol Cell Biochem 290:17–22. doi:10.1007/s11010-005-9076-4

  18. Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD (1994) Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta 1214:43–53

  19. Sharma R, Soni SK, Vohra RM, Gupta LK, Gupta JK (2002) Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084. doi:10.1016/S0032-9592(01)00316-8

  20. Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42:1090–1100. doi:10.1016/j.procbio.2007.05.005

  21. Vorderwuelbecke T, Kieslich K, Erdmann H (1992) Comparison of lipases by different assays. Enzyme Microb Technol 14:631–639. doi:10.1016/0141-0229(92)90038-P

  22. Wang Y, Srivastava KC, Shen GJ, Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 79:433–438. doi:10.1016/0922-338X(95)91257-6

  23. Ye P, Xu ZK, Che AF, Wu J, Seta P (2005) Chitosan-tethered poly (acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 26:6394–6403. doi:10.1016/j.biomaterials.2005.04.019

  24. Zaghloul TI, Kawamura F, Doi R (1985) Translational coupling in Bacillus subtilis of a heterologous Bacillus subtilis-Escherichia coli gene fusion. J Bacteriol 164:550–555

Download references

Acknowledgment

M. Sifour is very grateful to the “Ministry of Higher Education and Scientific Research of Algeria” for its financial support.

Author information

Correspondence to Mahmoud M. Berekaa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berekaa, M.M., Zaghloul, T.I., Abdel-Fattah, Y.R. et al. Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World J Microbiol Biotechnol 25, 287–294 (2009). https://doi.org/10.1007/s11274-008-9891-3

Download citation

Keywords

  • Geobacillus stearothermophilus
  • Immobilization
  • Production of lipase
  • Thermostable lipase