Advertisement

World Journal of Microbiology and Biotechnology

, Volume 25, Issue 2, pp 189–195 | Cite as

Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion

  • Armando C. F. Dias
  • Francisco E. C. Costa
  • Fernando D. Andreote
  • Paulo T. Lacava
  • Manoel A. Teixeira
  • Laura C. Assumpção
  • Welington L. Araújo
  • João L. Azevedo
  • Itamar S. Melo
Original Paper

Abstract

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.

Keywords

Auxin production Phosphate solubilization In vitro cultivation Fragaria ananassa 

Notes

Acknowledgements

We thank the Agroceres for supplying material and infra-structure for the laboratory of microbiology, locates at Univas (Pouso Alegre, MG, Brazil). We also thank Capes and CNPq for grants supplying for authors. In addition, we thank Francisco D. Andreote for technical supplying and critical discussions about the article.

References

  1. Andreote FD, Lacava PT, Gai CS, Araújo WL, Maccheroni W Jr, Overbeek LSV, Elsas JDV, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella Fastidiosa. Can J Microbiol 52:419–426. doi: 10.1139/W05-142 CrossRefGoogle Scholar
  2. Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial population and interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914. doi: 10.1128/AEM.68.10.4906-4914.2002 CrossRefGoogle Scholar
  3. Azevedo JL (1998) Biodiversidade microbiana e potencial biotecnológico. In: Melo IS, Azevedo JL (eds) Ecologia microbiana, 1st edn. Jaguariuna, EMBRAPA-CNPMA v.1, pp 445–461Google Scholar
  4. Barea JM, Azcón-Aguillar C, Azcón R (1983) Interactions between phosphate solubilizing bacteria and VA mycorrhiza to improve plant utilization of rock phosphate in non acidic soil. In: 3rd International congress on phosphorus coumpounds, pp 127–144Google Scholar
  5. Botelho JS (1999) A situação da cultura do morangueiro no Estado de Minas-Gerais. In: Duarte Filho J (ed) Morango: tecnologia de produção e processamento, 1st edn. Caldas, Minas Gerais, pp 125–128Google Scholar
  6. Christiansen-Weniger C, Van Veen JA (1991) NH4+-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host. Appl Environ Microbiol 57:3006–3012Google Scholar
  7. Costacurta A, Keijers V, Vanderleyden J (1995) Synthesis of phytormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18. doi: 10.3109/10408419509113531 CrossRefGoogle Scholar
  8. Canbolat MY, Bilen S, Cakmakci R, Şahin F, Aydın A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357. doi: 10.1007/s00374-005-0034-9 CrossRefGoogle Scholar
  9. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195CrossRefGoogle Scholar
  10. Heyrman J, Mergaert J, Denys R, Swings J (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181:55–62. doi: 10.1111/j.1574-6968.1999.tb08826.x CrossRefGoogle Scholar
  11. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480. doi: 10.1046/j.1365-2672.2003.02161.x CrossRefGoogle Scholar
  12. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. doi: 10.1111/j.1462-2920.2004.00658.x CrossRefGoogle Scholar
  13. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 186:5384–5391. doi: 10.1128/JB.186.16.5384-5391.2004 CrossRefGoogle Scholar
  14. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246. doi: 10.1016/j.soilbio.2007.08.014 CrossRefGoogle Scholar
  15. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mesgeay M, Van Der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. doi: 10.1080/0735-260291044377 CrossRefGoogle Scholar
  16. Marinetti GV (1962) Chromatographic separation, identification and analysis of phosphatides. J Lipid Res 3:1–20Google Scholar
  17. Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56. doi: 10.1007/s002840010259 CrossRefGoogle Scholar
  18. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267. doi: 10.1128/AEM.01222-07 CrossRefGoogle Scholar
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  20. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefGoogle Scholar
  21. Puente ME, Bashan Y, Li CY, Lebsky VK (2004a) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642. doi: 10.1055/s-2004-821100 CrossRefGoogle Scholar
  22. Puente ME, Li CY, Bashan Y (2004b) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650. doi: 10.1055/s-2004-821101 CrossRefGoogle Scholar
  23. Roesch LFW, Quadros PD, Camargo FAO, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 23:1377–1383. doi: 10.1007/s11274-007-9376-9 CrossRefGoogle Scholar
  24. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi: 10.1111/j.1574-6968.2007.00918.x CrossRefGoogle Scholar
  25. Salvaudon LGT, Shykoff JA (2008) Genetic diversity in natural populations: a fundamental component of plant–microbe interactions. Curr Opin Plant Biol 11:135–143. doi: 10.1016/j.pbi.2008.02.002 CrossRefGoogle Scholar
  26. Siragusa M, Carra A, Salvia L, Puglia AM, De Pasquale F, Carimi F (2007) Genetic instability in calamondin (Citrus madurensis Lour) plants derived from somatic embryogenesis induced by diphenylurea derivatives. Plant Cell Rep 26:1289–1296. doi: 10.1007/s00299-007-0326-7 CrossRefGoogle Scholar
  27. Smýkal P, Valledor L, Rodríguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998. doi: 10.1007/s00299-007-0413-9 CrossRefGoogle Scholar
  28. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi: 10.1111/j.1574-6976.2007.00072.x CrossRefGoogle Scholar
  29. Vazquez P, Holguin G, Puente M, Lopez E, Cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon. Biol Fertil Soils 30:460–468. doi: 10.1007/s003740050024 CrossRefGoogle Scholar
  30. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141. doi: 10.1016/S0168-1656(01)00333-9 CrossRefGoogle Scholar
  31. Yadav KS, Dadarwal KR (1997) Phosphate solubilization and mobilization through soil microorganisms. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, pp 293–308Google Scholar
  32. Wakelin S, Warren R, Harvey P, Ryder M (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. doi: 10.1007/s00374-004-0750-6 CrossRefGoogle Scholar
  33. Williams ES, Maheswaran B (1986) Somatic embryogenesis: factors influencing coordinated behavior of cell as an embryogenic group. Ann Bot (Lond) 57:443–462Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Armando C. F. Dias
    • 1
    • 2
    • 3
  • Francisco E. C. Costa
    • 3
  • Fernando D. Andreote
    • 1
  • Paulo T. Lacava
    • 2
  • Manoel A. Teixeira
    • 3
  • Laura C. Assumpção
    • 2
  • Welington L. Araújo
    • 2
  • João L. Azevedo
    • 2
  • Itamar S. Melo
    • 1
  1. 1.Laboratory of Environmental Microbiology – Embrapa Meio AmbienteJaguariunaBrazil
  2. 2.Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  3. 3.Laboratory of MicrobiologyUniversity of Vale do Sapucaí –UNIVASPouso AlegreBrazil

Personalised recommendations