World Journal of Microbiology and Biotechnology

, Volume 25, Issue 1, pp 131–137 | Cite as

Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas

  • Govindan Selvakumar
  • Piyush Joshi
  • Sehar Nazim
  • Pankaj K. Mishra
  • Samaresh Kundu
  • Hari S. Gupta
Original Paper

Abstract

Exiguobacterium acetylicum strain 1P (MTCC 8707) is a rhizospheric, Gram positive, rod shaped, yellow pigmented bacterium isolated from an apple orchard rhizospheric soil, on nutrient agar plates incubated at 4°C. The species level identification was arrived on the basis of 16S rRNA gene sequencing. The sequence showed 98% similarity with sequences of E. acetylicum available in the public domain. The strain was positive for siderophore and HCN production. In separate invitro assays it was found to inhibit the growth and development of Rhizoctoniasolani, Sclerotium rolfsii, Pythium and Fusarium oxysporum. The volatile compound produced by the bacterium was found to be the most potent in inhibiting the hyphal development of R. solani, S. rolfsii, Pythium and F. oxysporum by 45.55, 41.38, 28.92 and 39.74% respectively. Commonly observed deformities caused by the diffusible and volatile compounds produced by the bacterium included hyphal inhibition, constriction and deformation. Under pot culture conditions the bacterium improved the germination and early growth parameters of pea (Pisum sativum) in the presence of R. solani and S. rolfsii.

Keywords

Antagonist Exiguobacterium acetylicum Plant pathogen Himalaya 

References

  1. Bais HP, Park SW, Weir TL et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi:10.1016/j.tplants.2003.11.008 CrossRefGoogle Scholar
  2. Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457. doi:10.1016/0038-0717(87)90037-X CrossRefGoogle Scholar
  3. Barnett SJ, Roget DK, Ryder MH (2006) Suppression of Rhizoctonia solani AG-8 induced disease on wheat by the interaction between Pantoea, Exiguobacterium and Microbacteria. Aust J Soil Res 44:331–342. doi:10.1071/SR05113 CrossRefGoogle Scholar
  4. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350. doi:10.1016/S1369-5266(00)00183-7 CrossRefGoogle Scholar
  5. Burr TJ, Ceaser A (1984) A beneficial plant bacteria. CRC Crit Rev Plant Sci 2:1–20CrossRefGoogle Scholar
  6. Chaurasia B, Pandey A, Palni LMS et al (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81. doi:10.1016/j.micres.2004.09.013 CrossRefGoogle Scholar
  7. Collins CH, Lyne PM (1980) Microbiological methods. Butterworth and Co. (Publishers) Ltd, LondonGoogle Scholar
  8. De Weger LA, vander Bij AJ, Dekkers LC et al (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228Google Scholar
  9. Defago G, Haas D (1990) Pseudomonas as antagonists of soilborne plant pathogens: mode of action and genetic analysis. Soil Biochem 6:249–291Google Scholar
  10. Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strain. Appl Environ Microbiol 65:2429–2438Google Scholar
  11. Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343. doi:10.1016/S0167-7799(02)02021-8 CrossRefGoogle Scholar
  12. Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  13. Haas D, Defago G (2005) Biological control of soil borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129 CrossRefGoogle Scholar
  14. Huang HC, Hoes JA (1976) Penetration and infection in S. sclerotium by C. minitans. Can J Bot 54:406–410Google Scholar
  15. Kasana R, Yadav S (2007) Isolation of a psychrotrophic Exiguobacterium sp SKPB5 (MTCC 7803) and characterization of its alkaline protease. Curr Microbiol 54(3):117–121. doi:10.1007/s00284-006-0402-1 CrossRefGoogle Scholar
  16. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi:10.1094/PHYTO.2004.94.11.1259 CrossRefGoogle Scholar
  17. Knudston KE, Haas EJ, Iwen PC et al (2001) Characterization of a Gram-positive non spore forming Exiguobacterium like organism isolated from a western Colorado (USA) hot spring. Abstr: Annu Meet Am Soc Microbiol 1(92):30Google Scholar
  18. Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105Google Scholar
  19. Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363Google Scholar
  20. Miteva VI, Sheridan PP, Brenchly JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213. doi:10.1128/AEM.70.1.202-213.2004 CrossRefGoogle Scholar
  21. Negi YK, Garg SK, Kumar J (2005) Cold tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156Google Scholar
  22. Nowak J, Shulaev V (2003) Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124. doi:10.1079/IVP2002403 Google Scholar
  23. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676Google Scholar
  24. Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymouthica IC1270: cloning, sequencing and functional studies. J Bacteriol 186:4986–4993. doi:10.1128/JB.186.15.4986-4993.2004 CrossRefGoogle Scholar
  25. Pandey A, Palni LMS, Coulomb N (1997) Antifungal activity of bacteria isolated from rhizosphere of established tea bushes. Microbiol Res 152:105–112Google Scholar
  26. Pandey A, Palni LMS, Hebbar KP (2001) Suppression of damping-off in maize seedling by Pseudomonas corrugata. Microbiol Res 156:191–194. doi:10.1078/0944-5013-00102 CrossRefGoogle Scholar
  27. Pandey A, Trivedi P, Kumar B et al (2006) Soil microbial diversity from the Himalaya: need for documentation and conservation. NBA Bulletin no 5. National Biodiversity Authority Chennai, Tamilnadu, India, p 64Google Scholar
  28. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547. doi:10.1023/A:1020501420831 CrossRefGoogle Scholar
  29. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plant to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268. doi:10.1128/AEM.68.5.2261-2268.2002 CrossRefGoogle Scholar
  30. Rodriguez DF, Goris J, Vishnivetskaya et al (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles 10:285–294. doi:10.1007/s00792-005-0497-5 CrossRefGoogle Scholar
  31. Ryu CM, Farag MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp.103.026583 CrossRefGoogle Scholar
  32. Samanta SK, Dutta S (2004) Potential of native plant growth promoting rhizobacteria in the management of Sclerotinia stem rot of mustard. J Mycol Plant Pathol 34:761–768Google Scholar
  33. Schillinger U, Lucke FK (1989) Antibacterial activity of Lactobacillus strain isolated from meat. Appl Environ Microbiol 55:1901–1906Google Scholar
  34. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:40–47. doi:10.1016/0003-2697(87)90612-9 CrossRefGoogle Scholar
  35. Wada M, Yoshizumi A, Furukawa Y et al (2004) Cloning and expression of Exiguobacterium sp F42 gene encoding a new short chain dehydrogenase, which catalyzes the stereo selective reduction of ethyl 3-oxo 3-(2- thienyl) propanoate to ethyl(S)- 3-hydroxy-3 (2-thienyl) propanoate. Biosci Biotechnol Biochem 7:1481–1488. doi:10.1271/bbb.68.1481 CrossRefGoogle Scholar
  36. Yumoto I, Hishinuma-Narisawa M, Hirota K et al (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017. doi:10.1099/ijs.0.63129-0 CrossRefGoogle Scholar
  37. Zhang L, Birch RG (1997) Mechanisms of biocontrol by Pantoea dispersa of sugar cane leaf scald disease caused by Xanthomonas albilineans. J Appl Microbiol 82:448–454. doi:10.1046/j.1365-2672.1997.00135.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Govindan Selvakumar
    • 1
  • Piyush Joshi
    • 1
  • Sehar Nazim
    • 1
  • Pankaj K. Mishra
    • 1
  • Samaresh Kundu
    • 1
  • Hari S. Gupta
    • 1
  1. 1.Vivekananda Institute of Hill Agriculture (Indian Council of Agricultural Research)AlmoraIndia

Personalised recommendations