Advertisement

Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold

  • Souad Loqman
  • Essaid Ait Barka
  • Christophe Clément
  • Yedir OuhdouchEmail author
Original Paper

Abstract

One hundred and forty-two different actinomycete strains were isolated from rhizosphere soil of Vitis vinifera L. sampled from four Moroccan areas. To evaluate the antifungal effect of the different collected actinomycete isolates, five fungi known to be phytopathogens (Pythium ultimum, Fusarium oxyysporum f. sp. albedinis, Sclerotium rolfsii, Verticillium dahliae and Botrytis cinerea) were used. Results showed that 24 isolates had an in vitro inhibitory effect toward at least 4 of the indicator fungi, but only 9 inhibited all these phytopathogens. These nine isolates were subsequently evaluated individually using in vitro grapevine plantlets for their ability to protect against plant gray mold. We demonstrate here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea. Six of these strains were shown to belong to the genus Streptomyces and three to the genus Micromonospora. These findings indicate the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytis cinerea.

Keywords

Actinomycetes Antifungal activity Botrytis cinerea Screening Vitis vinifera L. 

Supplementary material

11274_2008_9864_MOESM1_ESM.pdf (23 kb)
MOESM1 [INSERT CAPTION HERE] (PDF 23 kb)

References

  1. Ait Barka E, Belarbi A, Hachet C, Nowark J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera L. co-cultured with plant growth–promoting rhizobacteria. FEMS Microbiol Lett 186:91–95. doi: 10.1111/j.1574-6968.2000.tb09087.x CrossRefGoogle Scholar
  2. Ait Barka E, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142. doi: 10.1016/S1049-9644(02)00034-8 CrossRefGoogle Scholar
  3. Barakate M, Ouhdouch Y, Oufdou K, Beaulieu C (2002) Characterization of rhizospheric soil streptomycetes from Maroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol 18:49–54. doi: 10.1023/A:1013966407890 CrossRefGoogle Scholar
  4. Becker B, Lechevalier MP, Gordon RE, Lechevalier HR (1964) Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolisates. Appl Microbiol 12:12421–12423Google Scholar
  5. Bressan W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48:233–240. doi: 10.1023/A:1022673226324 CrossRefGoogle Scholar
  6. Bulina TI, Alferova IV, Terekhova LP (1997) A novel approach to isolation of actinomycetes involving irradiation of soil samples with microwaves. Mikrobiologiya 66:231–234Google Scholar
  7. Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152. doi: 10.1016/j.femsle.2005.05.006 CrossRefGoogle Scholar
  8. Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Biocontrol of plant diseases using plant growth-promoting bacteria (PGPB): principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005 CrossRefGoogle Scholar
  9. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520. doi: 10.1016/j.soilbio.2005.12.017 CrossRefGoogle Scholar
  10. El-Tarabily KA, Hardy GE, Sivasithamparam K, Hussein AM, Kurtoboke DI (1997) The potential for biological control of cavity-spot disease of carrots, caused by Pythium coloratum by Streptomycete and non-Streptomycete actinomycetes. New Phytol 137:495–507. doi: 10.1046/j.1469-8137.1997.00856.x CrossRefGoogle Scholar
  11. El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GE, St J (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583. doi: 10.1046/j.1365-3059.2000.00494.x CrossRefGoogle Scholar
  12. Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidences of biological controlcapacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23:1503–1509. doi: 10.1007/s11274-007-9394-7 CrossRefGoogle Scholar
  13. Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–375. doi: 10.1111/j.1469-8137.2005.01436.x CrossRefGoogle Scholar
  14. Getha K, Vikineswary S (2002) Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. J Ind Microbiol 28:303–310. doi: 10.1038/sj.jim.7000247 CrossRefGoogle Scholar
  15. Gognies S, Belarbi A, Ait Barka E (2001) Saccharomyces cerevisiae, a potential pathogen towards grapevine, Vitis vinifera. FEMS Microbiol Ecol 37:143–150. doi: 10.1111/j.1574-6941.2001.tb00862.x CrossRefGoogle Scholar
  16. Gomes RC, Semêdo LT, Soares RM, Alviano CS, Linhares LF, Coelho RR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett Appl Microbiol 30:146–150. doi: 10.1046/j.1472-765x.2000.00687.x CrossRefGoogle Scholar
  17. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216. doi: 10.1146/annurev.mi.37.100183.001201 CrossRefGoogle Scholar
  18. Gunji S, Arima K, Beppu T (1983) Screening antifungal activities according including morphological abnormalities. Agric Biol Chem 47:2061–2069Google Scholar
  19. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E, Goodfellow M (2004) Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 54:2121–2129. doi: 10.1099/ijs.0.63070-0 CrossRefGoogle Scholar
  20. Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MV, Ouhdouch Y (2008a) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19. doi: 10.1016/j.apsoil.2007.08.007 CrossRefGoogle Scholar
  21. Hamdali H, Hafidi M, Virolle MV, Ouhdouch Y (2008b) Rock phosphate solubilizing Actinomycetes : screening for plant growth-promoting activities. World J Microbiol Biotechnol. doi: 10.1007/s11274-008-9817-0
  22. Hopwood DA, Bibb JM, Chater KF, Kiser T, Bruton CJ, Kiser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich, United KingdomGoogle Scholar
  23. Ilic SB, Konstantinovic SS, Todorovic ZB, Lazic ML, Veljkovic VB, Jokovic N, Radovanovic BC (2007) Characterization and antimicrobial activity of the bioactive metabolites in Streptomycete isolates. Microbiology 76:421–428. doi: 10.1134/S0026261707040066 CrossRefGoogle Scholar
  24. Jain PK, Jain PC (2007) Isolation, characterization and antifungal activity of Streptomyces sampsonii GS 1322. Indian J Exp Biol 45:203–206Google Scholar
  25. Jayasinghe DBAT, Parkinson D (2008) Actinomycetes as antagonists of litter decomposer fungi. Appl Soil Ecol 38:109–118. doi: 10.1016/j.apsoil.2007.09.005 CrossRefGoogle Scholar
  26. Jones CR, Samac DA (1996) Biological control of fungi causing alfalfa seedling damping-off with a disease-suppressive strain of Streptomyces. Biol Control 7:196–204. doi: 10.1006/bcon.1996.0084 CrossRefGoogle Scholar
  27. Kim BS, Moon SS, Hwang BK (2000) Structure elucidation and fungal activity of an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola. J Agric Food Chem 48:1875–1881. doi: 10.1021/jf990402u CrossRefGoogle Scholar
  28. Kim SB, Lonsdale J, Seong CN, Goodfellow M (2003) Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae. Antonie Van Leeuwenhoek 83:107–116. doi: 10.1023/A:1023397724023 CrossRefGoogle Scholar
  29. Kalakutskii LV, Sharaya LS (1990) Actinomycetes and higher plants. Usp Mikrobiol 2:26–65Google Scholar
  30. Lange L, Breinholt J, Rasmussen FW, Nielsen RI (1993) Microbial fungicides—the natural choice. Pestic Sci 39:155–160. doi: 10.1002/ps.2780390209 CrossRefGoogle Scholar
  31. Larkin RP, Fravel R (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of Tomato. Plant Dis 82:1022–1028. doi: 10.1094/PDIS.1998.82.9.1022 CrossRefGoogle Scholar
  32. Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol. doi: 10.1111/j.1469-8137.2007.02322.x
  33. Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471–1471Google Scholar
  34. Locci R (1994) Actinomycetes as plant pathogens. Eur J Plant Pathol 100:179–200. doi: 10.1007/BF01876235 CrossRefGoogle Scholar
  35. Martin C, Vernoy R, Carré M, Vesselle G, Collas A, Bougerey C (1987) The vine and techniques of in vitro cultivation. Bull Org Int Vigne 675–676:447–458Google Scholar
  36. Masih EI, Alie I, Paul B (2000) Can the grey mould disease of the grape-vine be controlled by yeast? FEMS Microbiol Lett 189:233–237. doi: 10.1111/j.1574-6968.2000.tb09236.x CrossRefGoogle Scholar
  37. Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434. doi: 10.1111/j.1462-2920.2006.01154.x CrossRefGoogle Scholar
  38. Martinez-Noel GMA, Madrid EA, Bottini R, Lamattina L (2001) Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiol Biochem 39:815–823. doi: 10.1016/S0981-9428(01)01298-0 CrossRefGoogle Scholar
  39. Nonomura H (1974) Key for classification and identification of 485 species of the Streptomyces included in the ISP. J Ferment Technol 52:78–92Google Scholar
  40. Nonomura H, Hayakawa M (1988) New methods for selective isolation of soil actinomycetes. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actinomycetes. Japan Scientific Societies Press, Tokyo, pp 288–293 ISBN 4-7622-1552-XGoogle Scholar
  41. Oakley B, North M, Franklin JF, Hedlund BF, Staley JT (2004) Diversity and distribution of Frankia strains symbiotic with Ceanothus in California. Appl Environ Microbiol 70:6444–6452. doi: 10.1128/AEM.70.11.6444-6452.2004 CrossRefGoogle Scholar
  42. Olson EH (1968) Actinomycetes Isolation Agar. In: Difco: supplementary literature. Difco Lab., Detroit, (Michi.)Google Scholar
  43. Ouhdouch Y, Barakate M, Finace C (2001) Actinomycetes from Maroccan habitats: screening for antifungal activites. Eur J Soil Biol 37:69–74. doi: 10.1016/S1164-5563(01)01069-X CrossRefGoogle Scholar
  44. Paul AK, Banerjee AK (1986) In vitro effect of antifungal antibiotic produced by Streptomyces galbus 5 ME-14. Hindustan Antibiot 28:15–19Google Scholar
  45. Pochon J, Tardieux P (1962) Technique d’analyse en microbiologie du sol, Edition de la Tourtourelle, Saint-MandéGoogle Scholar
  46. Prévost K, Couture G, Shipley B, Brzezinski R, Beaulieu C (2006) Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. Biocontrol 51:533–546. doi: 10.1007/s10526-005-4240-z CrossRefGoogle Scholar
  47. Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Nesli S (1992) Isolation of endophytic Streptomyces strains from surface-sterillized roots. Appl Environ Microbiol 58:2691–2698Google Scholar
  48. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  49. Soares ACF, Sousa CS, Garrido MS, Perez JO, Almeida NS (2006) Soil Streptomycetes with in vitro activity against the yam pathogens Curvularia eragrostides and Colletotrichum gloeosporioides. Braz J Microbiol 37:456–461. doi: 10.1590/S1517-83822006000400010 CrossRefGoogle Scholar
  50. Taechowisan T, Peberdy JF, Lumyong S (2004) PCR cloning and heterologous expression of chitinase gene of endophytic Streptomyces aureofaciens CMUAc130. J Gen Appl Microbiol 50:177–182. doi: 10.2323/jgam.50.177 CrossRefGoogle Scholar
  51. Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87. doi: 10.1146/annurev.mi.47.100193.000421 CrossRefGoogle Scholar
  52. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144. doi: 10.1007/s00253-006-0380-z CrossRefGoogle Scholar
  53. Vercesi A, Volpi E, Locci R (1990) Preliminary investigations on the Streptomyces flora of grapevine berries. Actinomycetes 1:7–9Google Scholar
  54. Vercesi A, Volpi E, Locci R (1991) On the presence of Streptomyces spp. in the grapevine carposphere. Actinomycetes 3:7–11Google Scholar
  55. Vercesi A, Nasini G, Locci R (1992) Biological and chemical characterization of the antibiotic activity of Streptomyces species isolated from grapevine carposphere. Actinomycetes 3:1Google Scholar
  56. Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295. doi: 10.1006/bcon.2001.1015 CrossRefGoogle Scholar
  57. Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYE108 as potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Souad Loqman
    • 1
    • 2
  • Essaid Ait Barka
    • 1
  • Christophe Clément
    • 1
  • Yedir Ouhdouch
    • 2
    Email author
  1. 1.Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences—UPRES EA 2069Université de Reims Champagne-ArdenneReims Cedex 2France
  2. 2.Faculté de Sciences Semlalia, Département de Biologie, Laboratoire de Biologie et de Biotechnologie des MicroorganismesUniversité Cadi Ayyad (UCAM)MarrakechMorocco

Personalised recommendations