Advertisement

The effect of thermal treatment on antibacterial properties of nanostructured TiO2(N) films illuminated with visible light

  • Corina Văcăroiu
  • Mădălin EnacheEmail author
  • Măriuca Gartner
  • Gabriela Popescu
  • Mihai Anastasescu
  • Aurelia Brezeanu
  • N. Todorova
  • Tatiana Giannakopoulou
  • Christos Trapalis
  • Lucia Dumitru
Original Paper

Abstract

This work focuses on the photocatalytic performances and antibacterial activity of nitrogen doped TiO2 nanosystems with three and five layers obtained by a sol-gel route, followed by thermal treatment in oxygen or ammonia atmosphere at temperatures between 400 and 1000°C. Subsequently, the antibacterial activity of the obtained nanosystems on the Escherichia coli cells are determined and discussed. The obtained results show a significant dependence of the functional performances on the system’s composition. In particular, the antimicrobial activity of nitrogen-doped TiO2 films is correlated with the temperature of thermal treatment and illumination time with visible artificial light.

Keywords

TiO2 coatings Nitrogen-doping Antibacterial properties Thin films Nanostructured films Illumination 

References

  1. Agustina TE, Ang HM, Vareek VK (2006) A review of synergistic effect of photocatalysis and ozonation of wastewater treatment. J Photochem Photobiol C Photochem Rev 6:264–273. doi: 10.1016/j.jphotochemrev.2005.12.003 CrossRefGoogle Scholar
  2. Ashikaga T, Wada M, Kobayashi H, Mori M, Katsumura Y, Fukui H et al (2000) Effect of the photocatalytic activity of TiO2 on plasmid DNA. Mutat Res 466:1–7Google Scholar
  3. Bekbölet M, Araz CV (1996) Inactivation of Escherichia coli by photocatalytic oxidation. Chemosphere 32:959–965. doi: 10.1016/0045-6535(95)00359-2 CrossRefGoogle Scholar
  4. Ferrin J, Oberdöster G (1985) Biological effects and toxicity assessment of titanium dioxides: anatase and rutile. Am Ind Hyg Assoc J 46:57–68Google Scholar
  5. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford Press, OxfordGoogle Scholar
  6. Hayat MA (1972) Basic electron microscopy technique. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  7. Hu S, Willey RJ, Notari B (2003) An investigation on the catalytic properties of titania–silica materials. J Catal 220:240–248. doi: 10.1016/S0021-9517(03)00294-X CrossRefGoogle Scholar
  8. Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670Google Scholar
  9. Justicia I, Ordejón P, Canto G, Mozos JL, Fraxedas J, Battiston GA et al (2002) Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv Mater 14:1399–1402. doi:10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-CCrossRefGoogle Scholar
  10. Jeyachandran YL, Venkatachalam S, Karunagaran B, Narayandass Sa K, Mangalaraj D, Bao CY et al (2007) Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Mater Sci Eng C 27:35–41. doi: 10.1016/j.msec.2006.01.004 CrossRefGoogle Scholar
  11. Kappus H (1985) Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic, New York, pp 273–310Google Scholar
  12. Kim SY, Kim EJ, Park JW (2002) Control of singlet oxygen-induced oxidative damage in Escherichia coli. J Biochem Mol Biol 35:353–357Google Scholar
  13. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum E, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanisms. Appl Environ Microbiol 65:4094–4098Google Scholar
  14. Paspaltsis I, Kotta K, Lagoudaki R, Grigoriadis N, Poulios I, Sklaviadis T (2006) Titanium dioxide photocatalytic inactivation of prions. J Gen Virol 87:3125–3130. doi: 10.1099/vir.0.81746-0 CrossRefGoogle Scholar
  15. Raynolds RS (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. doi: 10.1083/jcb.17.1.208 CrossRefGoogle Scholar
  16. Salata OV (2004) Application of nanoparticles in biology and medicine. J Nanobiotechnology 2:3. doi: 10.1186/1477-3155-2-3 CrossRefGoogle Scholar
  17. Sjogren JC, Sierka RA (1994) Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl Environ Microbiol 60:344–347Google Scholar
  18. Trapalis CC, Kokkoris M, Perdikakis G, Kordas G (2003a) Study of antibacterial composite Cu/SiO2 thin coatings. J Sol-Gel Sci Technol 26:1–6. doi: 10.1023/A:1020720504942 CrossRefGoogle Scholar
  19. Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A et al (2003b) TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433:186–190. doi: 10.1016/S0040-6090(03)00331-6 CrossRefGoogle Scholar
  20. Watts RJ, Kong S, Orr MP, Miller GC, Henry BE (1995) Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29:95–100CrossRefGoogle Scholar
  21. Whitesides GM (2003) The “right” size in nanobiotechnology. Nat Biotechnol 21:1161–1165. doi: 10.1038/nbt872 CrossRefGoogle Scholar
  22. Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ et al (2006) Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72:6111–6116. doi: 10.1128/AEM.02580-05 CrossRefGoogle Scholar
  23. Yates HM, Nolan MG, Shell DW, Pemble ME (2006) The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J Photochem Photobiol A 179:213–223. doi: 10.1016/j.jphotochem.2005.08.018 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Corina Văcăroiu
    • 1
  • Mădălin Enache
    • 1
    Email author
  • Măriuca Gartner
    • 2
  • Gabriela Popescu
    • 1
  • Mihai Anastasescu
    • 2
  • Aurelia Brezeanu
    • 1
  • N. Todorova
    • 3
  • Tatiana Giannakopoulou
    • 3
  • Christos Trapalis
    • 3
  • Lucia Dumitru
    • 1
  1. 1.Institute of Biology of the Romanian AcademyBucharestRomania
  2. 2.Institute of Physical Chemistry of the Romanian AcademyBucharestRomania
  3. 3.Institute of Materials ScienceNCSR “Demokritos”AthensGreece

Personalised recommendations