Advertisement

World Journal of Microbiology and Biotechnology

, Volume 24, Issue 12, pp 3091–3096 | Cite as

Isolation and characterization of arsenite-oxidizing bacteria from arsenic-contaminated soils in Thailand

  • Saowapar Kinegam
  • Thanvapon Yingprasertchai
  • Somboon Tanasupawat
  • Natchanun Leepipatpiboon
  • Ancharida AkaracharanyaEmail author
  • Kyoung-Woong Kim
Short Communication

Abstract

Two hundred and eighty-eight arsenic-resistant bacteria were isolated by an enrichment culture method from a total of 69 arsenic-contaminated soil-samples collected from Dantchaeng district in Suphanburi province (47 samples), and from Ron Phiboon district in Nakhon Sri Thammarat province (22 samples), in Central and Southern Thailand, respectively. Twenty-four of the 288 isolated arsenic-resistant bacteria were found to be arsenite-oxidizing bacteria. On the basis of their morphological, cultural, physiological, biochemical and chemotaxonomic characteristics, and supported by phylogenetic analysis based upon their 16S rRNA gene sequences, they were divided into five groups, within the genera Acinetobacter, Flavobacterium, Pseudomonas, Sinorhizobium and Sphingomonas, respectively. Within genera, phylogenetic analysis using the 16S rRNA gene sequences suggested that they were comprised of at least ten species, five isolates being closely related to known bacteria (Acinetobacter calcoaceticus NCCB 22016T, Pseudomonas plecoglossicida FPC951T, Ps. knackmussii B13T, Sinorhizobium morelense Lc04T, and Sphingomonas subterranea IFO16086T). The other five proposed species are likely to be new species closely related to Flavobacterium johnsoniae, Sinorhizobium morelense, Acinetobacter calcoaceticus and Pseudomonas plecoglossicida, but this awaits further characterization for confirmation of the taxonomic status. No overlap in isolated species or strains was observed between the two sites. The strain distribution and characterization are described.

Keywords

Acinetobacter  Arsenite-oxidizing bacteria Flavobacterium Pseudomonas Sinorhizobium Sphingomonas 

Notes

Acknowledgements

The authors thank Mr. Paichayon Charoenchaisri, Bureau of Environmental Management, Department of Primary Industries and Mines, Ministry of Industry for providing assistance in soil sampling and Dr. Robert Butcher for critical reading of the manuscript. This work was supported by the International Environmental Research Center (IERC), Gwangju Institute of Science and Technology, Gwangju, Korea.

References

  1. Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N, Degraeve S et al (2000) Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 50:9–18Google Scholar
  2. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC, Ringelberg DB et al (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201CrossRefGoogle Scholar
  3. Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  4. Carr EL, Kämpfer P, Patel BKC, Cürtler V, Seviour RJ (2003) Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963. doi: 10.1099/ijs.0.02486-0 CrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefGoogle Scholar
  6. Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340. doi: 10.1111/j.1574-6968.2001.tb10907.x CrossRefGoogle Scholar
  7. Islam FS, Gault AG, Boothman C, Polya DA, Chamok JM, Chatterjee D et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71. doi: 10.1038/nature02638 CrossRefGoogle Scholar
  8. Komagata K, Suzuki K (1987) Lipid and cell wall analysis in bacteria systematics. In: Colwell RR, Grigorava R (eds) Methods in microbiology, vol 19. Academic Press Limited, London, pp 161–207Google Scholar
  9. Kumar S, Tamura K, Jakobson IB, Nei M (2001) MEGA 2: molecular evolution analysis software. Bioinformatics 17:1244–1245. doi: 10.1093/bioinformatics/17.12.1244 CrossRefGoogle Scholar
  10. Lebrun E, Brugna M, Baymann F, Muller D, Lievremont D, Lett MC et al (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693. doi: 10.1093/molbev/msg071 CrossRefGoogle Scholar
  11. Lee JU, Lee SW, Kim KW, Yoon CH (2005) The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ Geochem Health 27:159–268. doi: 10.1007/s10653-005-0133-4 CrossRefGoogle Scholar
  12. McCammon SA, Bowman JP (2000) Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. Rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063Google Scholar
  13. National Research Council (1999) Arsenic in drinking water. National Academy Press, WashingtonGoogle Scholar
  14. Nriagu JO (2002) Arsenic poisoning through the ages. In: Fragenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 1–26Google Scholar
  15. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. doi: 10.1126/science.1081903 CrossRefGoogle Scholar
  16. Saito H, Miura K (1963) Preparation of transforming DNA by phenol treatment. Biochim Biophys Acta 72:619–629. doi: 10.1016/0006-3002(63)90288-9 CrossRefGoogle Scholar
  17. Saitou N, Nei M (1987) The neighboring-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  18. Simeonova DD, Lièvremont D, Lagarde F, Muller DAE, Groudeva VI, Lett M-C (2004) Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett 237:249–253. doi: 10.1111/j.1574-6968.2004.tb09703.x CrossRefGoogle Scholar
  19. Simeonova DD, Micheva K, Muller DAE, Lagarde F, Lett M-C, Groudeva VI et al (2005) Arsenite oxidation in batch reactors with alginate-immobilized ULPAsI strain. Biotechnol Bioeng 91:441–446. doi: 10.1002/bit.20530 CrossRefGoogle Scholar
  20. Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110Google Scholar
  21. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128. doi: 10.1111/j.1574-6968.1984.tb01388.x CrossRefGoogle Scholar
  22. Tanasupawat S, Thawai C, Yukphan P, Moonmangmee D, Itoh T, Adachi O et al (2004) Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the a-proteobacteria. J Gen Appl Microbiol 50:159–167. doi: 10.2323/jgam.50.159 CrossRefGoogle Scholar
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 CrossRefGoogle Scholar
  24. Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucoccphala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693. doi: 10.1099/ijs.0.01954-0 CrossRefGoogle Scholar
  25. Willems A, Fernández-López M, Munoz-Adelantado E, Goris J, De Vos P, Martínez-Romero E et al (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. Nov. request for an Opinion. Int J Syst Evol Microbiol 53:1207–1217. doi: 10.1099/ijs.0.02264-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Saowapar Kinegam
    • 1
  • Thanvapon Yingprasertchai
    • 2
  • Somboon Tanasupawat
    • 1
  • Natchanun Leepipatpiboon
    • 3
  • Ancharida Akaracharanya
    • 4
    Email author
  • Kyoung-Woong Kim
    • 5
  1. 1.Department of Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  2. 2.Department of Food Science and Technology, Faculty of Science and TechnologyKanchanaburi Rajabhat UniversityKanchanaburiThailand
  3. 3.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Department of Microbiology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  5. 5.Department of Environmental Science and EngineeringGwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations