Advertisement

Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols

  • G. R. Tortella
  • O. Rubilar
  • L. Gianfreda
  • E. Valenzuela
  • M. C. Diez
Original Paper

Abstract

This work presents a preliminary report of a series of studies on the ability of several indigenous wood-rotting fungi from Chile to produce hydrolytic and ligninolytic enzymes and the evaluation of these native microorganism to future research on potential applications in bioremediation programs. Wood-rotting Basidiomycete fungi were collected from indigenous hardwood forest in the South of Chile. Twenty-eight strains were identified and qualitative enzymatic tests for peroxidases, laccase, tyrosinase, xylanase and cellulase production were performed in solid medium. Eleven selected strains were evaluated in liquid medium to quantify their ligninolytic enzyme production and their capacity to grow in solid medium supplemented with 2,4-dichlorophenol (2,4-DCF), 2,4,6-trichlorophenol (2,4,6-TCF) and pentachlorophenol (PCP). PCP degradation and ligninolytic enzymes production were also evaluated in liquid medium. Results showed that laccase was present in 28 of the selected strains (≈73%). Peroxidase was present in 40% and cellulase in 37% of the strains. Xilanase and tyrosinase were obtained in a smaller percentage in the strains (28% and 7%, respectively). The 11 selected strains showed high concentrations of lignin peroxidase (Lip) and manganese peroxidase (MnP). Anthracophyllum discolor (Sp4), produced LiP and MnP at 90.3 and MnP 125.5 U L−1 respectively, compared to the control fungus Phanerochaete chrysosporium CECT-2798 that produced 58.1 and 118.4 U L−1 of LiP and MnP. Tolerance test showed that native Chilean fungi did not present high tolerance to 2,4,6-TCF and PCP but were quite tolerant to 25 and 50 mg L−1 of 2,4-DCF. However, pre-acclimatization in 2,4-DCP notably improved the growth in medium with 2,4,6-TCP and PCP. PCP in liquid medium was efficiently degraded by the fungi Anthracophyllum discolor, Lenzites betulina (Ru-30) and Galerina patagónica (Sp3), and the major MnP activity was produced by A. discolor (Sp4) (67 U L−1).

Keywords

Screening Wood-rotting fungi Cellulolytic enzyme Ligninolytic enzyme Xylanolytic enzyme PCP degradation 

Notes

Acknowledgements

This work was supported by FONDECYT 1050614 project—DIUFRO 160606 y DIUFRO GAP-2007.

References

  1. Agosín E, Daudin J, Odier E (1985) Screening of white-rot fungi on (14C) lignin-labelled and (14C) whole-labelled wheat straw. Appl Microbiol Biotechnol 22:132–138. doi: 10.1007/BF00250033 CrossRefGoogle Scholar
  2. Alleman BC, Logan BE, Gilbertson RL (1992) Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Appl Environ Microbiol 58:4048–4050Google Scholar
  3. Alleman BC, Logan BE, Gilbertson RL (1993) A rapid method to screen fungi for resistance to toxic chemicals. Biodegradation 4:125–129. doi: 10.1007/BF00702329 CrossRefGoogle Scholar
  4. Ander P, Eriksson KE (1977) Selective degradation of wood components by white rot fungi. Plant Physiol 41:239–248. doi: 10.1111/j.1399-3054.1977.tb04877.x CrossRefGoogle Scholar
  5. Atik C, Imamoglu S, Bermek H (2006) Impact of xylanase pre-treatment on peroxide bleaching stage of biokraft pulp. Int Biodet Biodeg 18:22–26. doi: 10.1016/j.ibiod.2006.04.003 CrossRefGoogle Scholar
  6. Barr DP, Aust SD (1994) Enzyme degradation of lignin. Rev Environ Contam Toxicol 138:49–72Google Scholar
  7. Breitenbach J, Kränzlin F (1986) Fungi of Switzerland. Non gilled fungi, vol. 2. Verlag Mykologia, Switzerland, 411 pGoogle Scholar
  8. Buckley KF, Dobson ADW (1998) Extracellular ligninolytic enzyme production and polymeric dye decolorization in immobilized cultures of Chrysosporium lignorum CL1. Biotech Lett 20:301–306CrossRefGoogle Scholar
  9. Cea M, Rubilar O, Tortella G, Diez MC (2007) Utilization of straw as substrate to enhance the ligninolytic and degradative activity of Anthracopyllum discolor and indigenous microorganisms in a Chilean soil contaminated with PCP. In: Proceeding of third international conference, enzymes in the environment. Viterbo, Italia, July 15–19Google Scholar
  10. deJong E, Field JA, Debont JAM (1994) Aryl alcohols in the physiology of ligninolytic fungi. FEBS Microbiol Rev 13:153–188CrossRefGoogle Scholar
  11. de Koker TH, Zhao J, Cullen D, Janse BJH (1998) Biochemical and molecular characterization of South African strains of Phanerochaete chrysosporium. Mycol Res 102:88–92. doi: 10.1017/S095375629700453X CrossRefGoogle Scholar
  12. de Koker T, Zhao J, Allsop S, Janse B (2000) Isolation and enzymic characterization of South African white-rot fungi. Mycol Res 104:820–824. doi: 10.1017/S0953756299002373 CrossRefGoogle Scholar
  13. Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, Martinez MJ, Sayadi S (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microbiol Technol 21:1514–1523Google Scholar
  14. Donoso C, Becerra J, Martínez M, Garrido N, Silva M (2008) Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from Chilean forestry. World J Microbiol Technol 24:961–968CrossRefGoogle Scholar
  15. D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313Google Scholar
  16. Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99CrossRefGoogle Scholar
  17. Elissetche JP, Ferraz A, Parra C, Freer J, Baeza J, Rodríguez J (2001) Biodegradation of Chilean native wood species Drimys winteri and Nothofagus dombeyi, by Ganoderma australe. World J Microbiol Technol 17:577–581CrossRefGoogle Scholar
  18. Field JA, de Jong E, Costa GF, de Bont JA (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white- rot fungi. Appl Environ Microbiol 58:2219–2226Google Scholar
  19. Ford CI, Walter M, Northcott GL, Di HJ, Cameron KC, Trower T (2007a) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. J Environ Qual 36:1599–1608CrossRefGoogle Scholar
  20. Ford CI, Walter M, Northcott GL, Di HJ, Cameron KC, Trower T (2007b) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand Trametes species in contaminated field soils. J Environ Qual 36:1749–1759CrossRefGoogle Scholar
  21. Galeno G, Agosin E (1990) Screening of white-rot fungi for efficient decolourization of bleach pulp effluents. Biotechnol Lett 12:869–872CrossRefGoogle Scholar
  22. Galliano H, Gas G, Seris JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol 13:478–482CrossRefGoogle Scholar
  23. Gianfreda L, Rao M (2004) Potencial of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354CrossRefGoogle Scholar
  24. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–25CrossRefGoogle Scholar
  25. Guimarães L, Peixoto-Nogueira S, Michelin M, Rizzatti A, Sandrim V, Zanoelo F, Aquino A, Barbosa B Jr, Polizeli ML (2006) Screening of filamentous fungi for production of enzymes of biotechnological interest. Braz J Microbiol 37:474–480Google Scholar
  26. Hernandez-Luna CE, Gutierrez-Soto G, Salcedo-Martinez SM (2008) Screening for decolorizing basidiomycetes in Mexico. World J Microbiol Technol 24:465–473CrossRefGoogle Scholar
  27. Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 60:201–221CrossRefGoogle Scholar
  28. Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2006) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microbiol Technol 22:391–397CrossRefGoogle Scholar
  29. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87CrossRefGoogle Scholar
  30. Lamar RT, Larsen MT, Kirk TK (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol 56(11):3519–3526Google Scholar
  31. Lazo W (2001) Hongos de Chile. Atlas Micológico. Facultad de Ciencias de la Universidad de Chile, Salesianos S.A, Chile, 231 pGoogle Scholar
  32. Leontievsky A, Myasoedova N, Golovleva L, Sedaraty M, Evans C (2002) Adaptation of the white rot basidiomycete Panus tigrinus for transformation of high concentrations of chlorophenols. Appl Microbiol Biotechnol 59:599–604CrossRefGoogle Scholar
  33. Leung P, Pointing S (2002) Effect of different carbon and nitrogen regimes on Poly-R decolorization by white rot fungi. Mycol Res 106:86–92CrossRefGoogle Scholar
  34. Levin L, Forchiassin F, Ramos AM (2002) Copper induction of lignin modifying enzymes in the white rot fungus Trametes trogii. Mycologia 94:377–383CrossRefGoogle Scholar
  35. Levin L, Papinutti L, Forchiassin F (2004) Evaluation of Argentinean white rots fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Biores Technol 2:169–176CrossRefGoogle Scholar
  36. Machado K, Matheus D, Bononi V (2005) Ligninolytic enzymes production and Remazol brilliant blue R decolorization by tropical Brazilian Basidiomycetes fungi. Braz J Microbiol 36:246–252CrossRefGoogle Scholar
  37. Marr CD, Grund DW, Harrison KA (1986) The taxonomic potential of laccase and tyrosinase spot tests. Mycologia 78:169–184CrossRefGoogle Scholar
  38. Martinez M, Baeza J, Freer J, Rodriguez J (2000) Chlorophenol tolerant and degradative bacteria isolated from a river receiving pulp mill discharger. Toxicol Environ Chem 77:159–170CrossRefGoogle Scholar
  39. Mendoza-Cantú A, Albores A, Fernández-Linares L, Rodríguez-Vázquez R (2000) Pentachlorophenol biodegradation and detoxification by the white rot fungus Phanerochaete chrysosporium. Environ Toxicol 15:107–113CrossRefGoogle Scholar
  40. Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of penthachorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889Google Scholar
  41. Montiel AM, Fernández FJ, Marcial J, Soriano J, Barrios-González J, Tomasini A (2004) A fungal phenoloxidase (tyrosinase) involved in pentachlorophenol degradation. Biotechnol Lett 26(17):1353–1357CrossRefGoogle Scholar
  42. Moreno G, Manjon J, Zugaza A (1986) La guía de INCAFO de los hongos de la Península Ibérica, volumen 1. Incafo, Madrid, 650 pGoogle Scholar
  43. Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551CrossRefGoogle Scholar
  44. Peláes F, Martínez MJ, Martínez AT (1995) Screening of 68 species of basidiomycetes for enzymes evolved in lignin degradation. Mycol Res 99:37–42Google Scholar
  45. Pointing S (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33Google Scholar
  46. Pointing SB, Vrijmoed LLP, Jones EBG (1999) Laccase is produced as the sole lignin modifying enzyme in submerged liquid culture by the white-rot fungus Pycnoporus sanguineus. L. Mycologia 91:345–349Google Scholar
  47. Reddy GB, Gold M (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413Google Scholar
  48. Rho D, Desrochers M, Jurasek L, Driguez H, Defaye J (1982) Induction of cellulase in Schizophyllum commune: thiocellobioseas a new inducer. J Bacteriol 149:47–53Google Scholar
  49. Rigas F, Marchant R, Dritsa V, Kapsanaki-Gotsi E, Avramides L (2003) Screening of wood rotting fungi potentially useful for the degradation of organic pollutants. WASP Focus 3:201–210Google Scholar
  50. Rubilar O, Feijoo G, Diez MC, Lu-Chau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:744–6751CrossRefGoogle Scholar
  51. Sedarati MR, Keshavarz T, Leontievsky AA, Evans CS (2003) Transformation of high concentrations of chlorophenols by the white-rot basidiomycete Trametes versicolor immobilized on nylon mesh. Electron J Biotechnol 6:104–114Google Scholar
  52. Steiner W, Lafferty RM, Gomes I, Esterbauer H (2004) Studies on a wild strain of Schizophyllum commune: cellulase and xylanase production and formation of the extracellular polysaccharide Schizophyllan. Biotechnol Bioeng 30:169–178CrossRefGoogle Scholar
  53. Tekere M, Ncube I, Read JS, Zvauya R (2001) Biodegradation of the organochlorine pesticide, lindane by a subtropical white rot fungus in batch and packed bed bioreactor system. Environ Technol 23:199–206CrossRefGoogle Scholar
  54. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosprium Burd. Science 221:661–663CrossRefGoogle Scholar
  55. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284CrossRefGoogle Scholar
  56. Tortella G, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212CrossRefGoogle Scholar
  57. Tortella G, Rubilar O, Donoso C, Acevedo F, Diez MC (2006a) Utilización de Anthracophyllum discolor inmovilizado sobre sustrato orgánico para la descontaminación de residuos líquidos. In: Proceeding of AIDIS congress, Punta del Este, Uruguay, 26–11 de November 2006Google Scholar
  58. Tortella G, Rubilar O, Mora ML, Diez MC (2006b) Selection of Chilean native wood-rot fungi for bioremediation of allophanic soil contaminated with chlorophenols. In: Proceeding of 18th world congress of soil science, Pensylvania USA, 9 al 15 de July 2006Google Scholar
  59. Walter M, Guthrie J, Sivakumaran S, Parker E, Slade A, McNaughton D, Boyd-Wilson K (2003) Screening of New Zealand native white-rot isolates for PCP degradation. Bioremediat J 7:119–128CrossRefGoogle Scholar
  60. Walter M, Boul L, Chong R, Ford C (2004) Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J Environ Manage 71:361–369CrossRefGoogle Scholar
  61. Willick GE, Morosoli R, Seligy VL, Yaguchi M, Desrochers M (1984) Extracellular proteins secreted by the basidiomycete Schizophyllum commune in response to carbon source. J Bacteriol 159:294–299Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. R. Tortella
    • 1
  • O. Rubilar
    • 1
  • L. Gianfreda
    • 2
  • E. Valenzuela
    • 3
  • M. C. Diez
    • 1
  1. 1.Depto de Ingeniería QuímicaUniversidad de La FronteraTemucoChile
  2. 2.Dipartimento di Scienze del Suolo, della Pianta e dell’Ambiente, ed delle Produzioni AnimaliUniversità di Napoli Federico IIPortici, NapoliItaly
  3. 3.Facultad de Ciencias, Instituto de MicrobiologíaUniversidad Austral de ChileValdiviaChile

Personalised recommendations