World Journal of Microbiology and Biotechnology

, Volume 24, Issue 12, pp 3079–3085 | Cite as

An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites

Short Communication


We have isolated and characterized a xylanolytic actinomycete strain (RM1) from the extremely alkaline bauxite residue obtained from National Aluminum Company Ltd., Damanjodi, India. The phenotypic features and complete sequence of 16S rRNA revealed that this strain belong the genus Kocuria and showed 98% sequence similarity with Kocuria aegyptia. The RM1 strain was able to grow at pH 10.5 in buffered and unbuffered media and utilize 40 different carbon substrates. The RM1 strain under optimal conditions produced extracellular xylanase at 311 U/ml. The xylanase produced by RM1 showed a wide range of temperature (30–85°C) and pH (4.5–9) tolerance by retaining 90% of its activity. This is the first report of isolation of actinomycetes, Kocuria sp., which produces high amount of xylanase, from bauxite residue and offers a new source of xylanase-producing strains.


Actinomycetes Kocuria sp. 16S rDNA Xylanase CMCase Bauxite residue 



This research is supported by research grant of Department of Biotechnology (DBT), Govt. of India, New Delhi. Authors are thankful to TIFAC-CORE for facilities and to Dr. Gopi K. Podila, University of Alabama Huntsville, USA for his critical comments.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang S, Zhang Z, Miller W et al (1997) Gapped BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  2. Ayyachamy M, Vatsala TM (2007) Production and partial characterization of cellulase free xylanase by Bacillus subtilis C 01 using agriresidues and its application in biobleaching of nonwoody plant pulps. Lett Appl Microbiol 45:467–472. doi: 10.1111/j.1472-765X.2007.02223.x CrossRefGoogle Scholar
  3. Biely P, Markovic O, Mislovicova D (1985) Sensitive detection of endo-1, 4-β-glucanases and endo-1, 4-β-xylanases in gels. Anal Biochem 144:147–151. doi: 10.1016/0003-2697(85)90096-X CrossRefGoogle Scholar
  4. Beg QA, Kapoor M, Mahajan G, Hoondal S (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338. doi: 10.1007/s002530100704 CrossRefGoogle Scholar
  5. Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46:219–252. doi: 10.1146/annurev.mi.46.100192.001251 CrossRefGoogle Scholar
  6. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA et al (2003) The ribosomal databse project (RDP-II): previewing a new autoaligner that allow a regular updates and the now prokaryotic taxonomy. Nucleic Acids Res 31:442–443. doi: 10.1093/nar/gkg039 CrossRefGoogle Scholar
  7. Damiano VB, Bocchini DA, Gomes E, Silva RD (2003) Application of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of Eucalyptus kraft pulp. World J Microbiol Biotechnol 19:139–144. doi: 10.1023/A:1023244911314 CrossRefGoogle Scholar
  8. Duarte MC, Silva ECD, Gomes IMDB, Ponezi AN, Portugal EP, Vincente JR et al (2003) Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis pulp for pulp bleaching improvement. Bioresour Technol 88:9–15. doi: 10.1016/S0960-8524(02)00270-5 CrossRefGoogle Scholar
  9. Evans K (1993) Properties and uses of oxides and hydroxides. In: Downs AJ (ed) Chemistry of aluminium, gallium, indium and thallium. Blackie Academic and Professional, London, pp 248–288Google Scholar
  10. Fernández López CL, Rodríguez J, Ball AS, Copa JL (1998) Application of the affinity binding of xylanases to oat-spelt xylan in the purification of endoxylanase CM-2 from Streptomyces chattanoogensis CECT 3336. Appl Microbiol Biotechnol 50:284–287Google Scholar
  11. Gessesse A, Mamo G (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. J Ind Microbiol Biotechnol 20:210–214. doi: 10.1038/sj.jim.2900503 CrossRefGoogle Scholar
  12. Goodfellow M (1989) Suprageneric classification of actinomycetes. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, MD, pp 2333–2339Google Scholar
  13. Gupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol 88:325–334. doi: 10.1046/j.1365-2672.2000.00974.x CrossRefGoogle Scholar
  14. Hamdy MK, Williams FS (2001) Bacterial amelioration of bauxite residue waste of industrial alumina plants. J Ind Microbiol Biotechnol 27:228–233. doi: 10.1038/sj.jim.7000181 CrossRefGoogle Scholar
  15. Hunt N, Gilkes B (1992) Land monitoring handbook. University of Western Australia, Nedland, Western AustraliaGoogle Scholar
  16. Kansoh AL, Nagieb ZA (2004) Xylanase and mannanase enzymes from Streptomyces galbus NR and theiruse in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek 85:103–114. doi: 10.1023/B:ANTO.0000020281.73208.62 CrossRefGoogle Scholar
  17. Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibers. Process Biochem 36:803–807. doi: 10.1016/S0032-9592(00)00282-X CrossRefGoogle Scholar
  18. Krishna P, Reddy MS, Patnaik SK (2005) Aspergillus tubingensis reduces the pH of the bauxite residue (red mud) amended soil. Water Air Soil Pollut 167:201–204. doi: 10.1007/s11270-005-0242-9 CrossRefGoogle Scholar
  19. Kulkarni N, Rao M (1996) Application of xylanase from alkaliphilic thermophilic Bacillus sp. NCIM 59 in biobleaching of bagasse pulp. J Biotechnol 51:167–173. doi: 10.1016/0168-1656(96)01616-1 CrossRefGoogle Scholar
  20. Li WJ, Zhang YQ, Schumann P, Chen HH, Hozzein WN, Tian XP et al (2006) Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 56:733–737. doi: 10.1099/ijs.0.63876-0 CrossRefGoogle Scholar
  21. McCarthy AJ (1987) Lignocellulose degradation by actinomycetes. FEMS Microbiol Rev 46:145–163. doi: 10.1111/j.1574-6968.1987.tb02456.x CrossRefGoogle Scholar
  22. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  23. Miller JM, Biddle JW, Quenzer VK, McLaughlin JC (1993) Evaluation of Biolog for identification of members of the family Micrococcaceae. J Clin Microbiol 31:3170–3173Google Scholar
  24. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol 51:711–729. doi: 10.1007/s002530051456 CrossRefGoogle Scholar
  25. Nogawa M, Goto M, Okada H, Morikawa Y (2001) l-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr Genet 38:329–334. doi: 10.1007/s002940000165 CrossRefGoogle Scholar
  26. Ooshima H, Burns DS, Converse AO (1990) Adsorption of cellulase from T. reesei on cellulose and lignaceous residue in wood pretreated by dil. H2SO4 with explosive decomposition. Biotechnol Bioeng 36:446–452. doi: 10.1002/bit.260360503 CrossRefGoogle Scholar
  27. Royer JC, Nakas JP (1989) Xylanase production by Trichoderma longibrachiatum. Enzyme Microb Technol 11:405–410. doi: 10.1016/0141-0229(89)90134-8 CrossRefGoogle Scholar
  28. Sadowsky MJ, Kinkel LL, Bowers JH, Schottel JL (1996) Use of repetitive intergenic DNA sequences to classify pathogenic and disease suppressive Streptomyces strains. Appl Environ Microbiol 62:3489–3493Google Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 CrossRefGoogle Scholar
  30. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interations in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780Google Scholar
  31. Thompson JD, Gibson TJ, Plewniale F, Jeanmaugin F, Higgins DG (1997) The CLUSTAL X windows interface flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 CrossRefGoogle Scholar
  32. Weisberg WA, Barns SM, Pelletier DA, Lane DJ (1991) 16S rDNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar
  33. Wong JWC, Ho GE (1991) Effects of gypsum and sewage sludge amendment on physical properties of fine bauxite refining residue. Soil Sci 152:326–332. doi: 10.1097/00010694-199111000-00003 CrossRefGoogle Scholar
  34. Wong KKY, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12:413–435. doi: 10.3109/07388559209114234 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pankaj Krishna
    • 1
  • Amita Arora
    • 1
  • M. Sudhakara Reddy
    • 1
    • 2
  1. 1.Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia
  2. 2.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations