Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrata

  • Venkatesan Gopiesh khanna
  • Krishnan Kannabiran
Short Communication


The antimicrobial activity of saponin fractions from the leaves of Gymnema sylvestre and Eclipta prostrata was evaluated against pathogenic bacteria and fungi in an in vitro condition. A series of concentrations of crude and pure saponin fractions were tested for antimicrobial activity by zone of inhibition method. The pure saponin fractions were found to be more effective against tested bacterial pathogens when compared to crude saponin fractions. The minimum inhibitory concentration (MIC) exhibited by the pure saponin fraction of G. sylvestre was found to be in the range of 600–1,200 mg/l against bacterial strains and 1,400 mg/l for fungal isolates. In the case of E. prostrata, the range was 1,000–1,200 mg/l for bacteria and 1,400 mg/l for fungal isolates. The susceptibility of bacterial pathogens for saponin fractions was in the order of Paeruginosa, E. coli, S. typhi, K. pneumoniae, P. mirablis, S. aureus and for fungal pathogens A. fumigatus followed by A. niger and A. flavus. Whereas, A. niger was more susceptible to inhibition by E. prostrata saponin fractions, followed by A. flavus and A. fumigatus. The antimicrobial potential of saponin fractions was compared with antibiotics, Chloramphenicol and Amphotericin-B with respect to bacteria and fungi. The present study suggests that the saponin fractions G. sylvestre and E. prostrata possess significant antibacterial and antifungal activity. Our results further suggest that saponins of G. sylvestre and E. prostrata can be used as a potential fungicide against pathogenic fungi.


Antimicrobial activity Crude saponin Pure saponin Antifungal susceptibility testing Minimum inhibitory concentration 



The authors wish to thank the management of VIT University for providing necessary facilities for completion of this study.


  1. Atefl DA, ErdoÛrul OT (2003) Antimicrobial activities of various medicinal and commercial plant extracts. Turk J Biol 27:157–162Google Scholar
  2. Andrews JM (2001) Determination of minimal inhibitory concentrations. J Antimicrob chemother 48:5–16. doi: 10.1093/jac/48.2.322 CrossRefGoogle Scholar
  3. Baccou JC, Lambert F, Sauvaire Y (1977) Spectrophotometric method for the determination of total steroidal sapogenin. Analyst 1021215:458–465. doi: 10.1039/an9770200458 CrossRefGoogle Scholar
  4. Ellof JN (1998) Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethnopharmacol 60:1–6. doi: 10.1016/S0378-8741(97)00123-2 CrossRefGoogle Scholar
  5. ErdoÛrul OT (2002) Antibacterial activities of some plant extracts used in folk medicine. Pharm Biol 40:269–273CrossRefGoogle Scholar
  6. Favel A, Kemertelidze E, Benidze M, Fallague K, Regli P (2005) Antifungal activity of steroidal glycosides from Yucca gloriosa L. Phytother Res 19:158–161. doi: 10.1002/ptr.1644 CrossRefGoogle Scholar
  7. Giamarellos-Bourboulis EJ, Grecka P, Dionyssiou-Asteriou A, Giamarellou H (1999) In vitro interactions of gamma-linolenic acid and arachidonic acid with ceftazoline on multiresistant Pseudomonas aeruginosa. Lipids 34:151–152. doi: 10.1007/BF02562270 CrossRefGoogle Scholar
  8. Hugo WB, Russell AD (1983) Pharmaceutical microbiology 3rd edn. Blackwell Scientific PublicationsGoogle Scholar
  9. Karthikumar S, Vigneswari K, Jegatheesan K (2007) Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrata (L). Sci Res Essay 2:101–104Google Scholar
  10. Oakenfull D, Fenwick DE (1981) Saponin content of soybeans and some commercial soybean products. J Sci Food Agric 32:273–278. doi: 10.1002/jsfa.2740320311 CrossRefGoogle Scholar
  11. Reddy PS, Jamil K, Madhusudhan P (2006) Antibacterial activity of isolates from Piper longum and Taxus baccata. Pharm Biol 39:236–238CrossRefGoogle Scholar
  12. Santos PRV, Oliveira ACX, Tomassini TCB (1995) Controle microbiógico de produtos fitoterápicos. Rev Farm Bioquím 31:35–38Google Scholar
  13. Satdive RK, Abhilash P, Fulzele DP (2003) Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia 74:699–701 doi: 10.1016/S0367-326X(03)00154-0 CrossRefGoogle Scholar
  14. Soetan KO, Oyekunle MA, Aiyelaagbe OO, Fafunso MA (2006) Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench Afr J Biotechnol 5:2405–2410Google Scholar
  15. Umeatsu Y, Hirata K, Saito K, Kudo I (2000) Spectrophotometric determination of saponins in Yucca extract used as food additive. J AOAC Int 836:1451–1454Google Scholar
  16. Wayne PA (2002) National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard M38-AGoogle Scholar
  17. Wiart C, Mogana S, Khalifah S, Mahan M, Ismail S, Buckle M, Narayana AK, Sulaiman M. (2004) Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia 75:68–73. doi: 10.1016/j.fitote.2003.07.013 CrossRefGoogle Scholar
  18. Yan W, Ohtani K, Kasai R, Yamasaki K (1996) Steroidal saponin from fruits of Tribulus terrestris. Phytochemistry 42:1417–1422. doi: 10.1016/0031-9422(96)00131-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Venkatesan Gopiesh khanna
    • 1
  • Krishnan Kannabiran
    • 1
  1. 1.School of BiotechnologyChemical and Biomedical Engineering, VIT UniversityVelloreIndia

Personalised recommendations