Composition and in vitro antimicrobial activity of Populus buds and poplar-type propolis

  • Gülhan Vardar-Ünlü
  • Sibel Silici
  • Mehmet Ünlü
Original Paper


The antibacterial activity of propolis has been widely investigated. Since reports dealing with antimicrobial activity of the origin of propolis are not available, this study was carried out aiming to analyse the in vitro antimicrobial activity of the methanol extracts of poplar type propolis and Populus (Populus nigra, P. alba, P. tremuloides) buds as its sources against standard strains of a panel of microorganisms by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The concentrations of the “poplar” phenolics were relatively high (4.5%) and some compounds typical for P. nigra such as pinobanksin and 4,3 acetyloxycaffeate were found in the propolis sample by GC-MS. The poplar type propolis and Populus bud exudates were found to inhibit most clinically important microorganisms in a wide spectrum including pathogenic yeasts but not Gram-negative bacteria.


Antimicrobial activity Propolis Populus buds GC-MS MIC 


  1. Amoros M, Sauvager F, Girre L et al (1992) In vitro anti viral activity of propolis. Apidologie 23:231–245CrossRefGoogle Scholar
  2. Bankova V, Marcucci MC (2000) Standardization of propolis: present status and perspectives. Bee World 81:182–188Google Scholar
  3. Bankova VS, Castro SL, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3–15CrossRefGoogle Scholar
  4. Bankova V, Dyulgerov A, Popov S et al (1992) Propolis produced in Bulgaria and Mongolia: phenolic compounds and plant origin. Apidologie 23:79–85CrossRefGoogle Scholar
  5. Bankova V, Popova M, Bogdanov S et al (2002) Chemical composition of European propolis: expected and unexpected results. Z Naturforsch 57c:530–533Google Scholar
  6. Bartzatt R, Cirillo SLG, Cirillo JD (2007) Antibacterial activity of dipeptide constructs of acetylsalicyclic acid and nicotinic acid. Drug Deliv 14(2):105–109CrossRefGoogle Scholar
  7. Bonvehi JS, Coll FV, Jorda RE (1994) The composition, active components and bacteriostatic activity of propolis in dietetics. J Am Oil Chem Soc 71:529–532CrossRefGoogle Scholar
  8. Bosio K, Avanzini C, D’Avolio A et al (2000) In vitro activity of propolis against Streptococcus pyogenes. Lett Appl Microbiol 31:174–177CrossRefGoogle Scholar
  9. Browning BL (1967) Methods of wood chemistry, vol. 1. New York, Interscience PublishersGoogle Scholar
  10. Castro SL, Higashi KO (1995) Effect of different formulations of propols on mice infected with Trypanosoma cruzi. Journal of Ethnopharmacol 46:55–58CrossRefGoogle Scholar
  11. Castaldo S, Capasso F (2002) Propolis, and old remedy used in modern medicine. Fitoterapia 73(1):1–6CrossRefGoogle Scholar
  12. Clinical and Laboratory Standard Institute (2005) Performance standards for antimicrobial susceptibility testing. Fifteenth informational supplement. M100-S15. CLSI, Wayne, PennsylvaniaGoogle Scholar
  13. Dimov V, Ivanovska N, Manolova N et al (1991) Immunomodulatory action of popolis. Influence on anti-infectious protection and macrophage function. Apidologie 22:155–162CrossRefGoogle Scholar
  14. Dobrowolski JW, Vohora SB, Sharma K et al (1991) Antibacterial, antiviral, antiameboic, anti-inflammatory and antipyretic studies on propolis bee products. Journal of Ethnopharmacol 35:77–82CrossRefGoogle Scholar
  15. Frenkel K, Wei H, Brimani R et al (1993) Inhibition of tumor-promoter mediated processes in mouse skin and bovine lens by caffeic acid phenyl ester. Cancer Res 53:1255–1261Google Scholar
  16. Grange JM, Davey RW (1990) Antibacterial properties of propolis (bee glue). J Royal Soc Med 83:159–160Google Scholar
  17. Greenaway W, Whatley FR (1990) Analysis of phenolics of bud exudate of Populus angustifolia by GC-MS. Phytochemistry 29:2552–2554CrossRefGoogle Scholar
  18. Greenaway W, Scaysbrook T, Whatley FR (1990) The composition and plant origins of propolis: a report of work at Oxford. Bee World 71:107–118Google Scholar
  19. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990CrossRefGoogle Scholar
  20. Herald PJ, Davidson PM (1983) Antibacterial activity of selected hydroxycinnamic acids. J Food Sci 48:1378–1379CrossRefGoogle Scholar
  21. Johnson EM, Richardson MD, Warnock DW (1984) In-vitro resistance to imidazole antifungals in Candida albicans. J Antimicrob Chemother 13:547–558CrossRefGoogle Scholar
  22. Kedzia B, Geppert B, Iwaszkiewicz J (1986) Pharmacological investigations of ethanolic extract of propolis. Phytotherapie 6:7–10Google Scholar
  23. Krol W, Scheller S, Shani J et al (1993) Synergistic effect of ethanolic extract of popolis and antibiotics on the growth of Staphylococcus aureus. Arzneimittel Forschung 43:607–609Google Scholar
  24. Kujumgiev A, Tsvetkova I, Serkedjieva Yu et al (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64:235–240CrossRefGoogle Scholar
  25. Kustimur S, Kalkanci A, Mansuroglu H (2001) Determination of fluconazole susceptibility of Candida species: comparison of two microdlution methods. Turk J Infect 15:349–351Google Scholar
  26. Lattmann E, Dunn S, Niamsani S et al (2005) Synthesis and antibacterial activities of 5-hydroxy-4-amino-2(5H)-furanones. Bioorg Med Chem Lett 1584:919–921CrossRefGoogle Scholar
  27. Metzner J, Bekemeier H, Paintz E et al (1979) Zur antimikrobiellen Wirksamkeit von propolis und propolis inhaltstoffen. Pharmazie 34:97–102Google Scholar
  28. Mirzoeva OK, Grishanin RN, Calder PC (1997) Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res 152:239–246Google Scholar
  29. Ozcan M (1999) Antifungal properties of propolis. Grasas Aceites 50:395–398Google Scholar
  30. Park ES, Moon WS, Dong MJ et al (2001) Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegradation 47(4):209–214CrossRefGoogle Scholar
  31. Pearl IA, Darling SF (1970) Salicaceae: hot water phenolic extractives of the bark and leaves of diploid Populus tremuloides. Phytochemistry 10:483–484CrossRefGoogle Scholar
  32. Popova M, Bankova V, Naydensky Ch et al (2004) Comparative study of the biological activity of propolis from different geographic origin: a statistical approach. Macedonian Pharm Bull 50:9–14Google Scholar
  33. Popova M, Silici S, Kaftanoglu O et al (2005) Antibacterial activity of Turkish propolis and its qualitative and quantative chemical composition. Phytomedicine 12:221–228CrossRefGoogle Scholar
  34. Salatino A, Teixeira EW, Negri G et al (2005) Origin and chemical variation of Brazilian propolis. eCAM 2:33–38Google Scholar
  35. Santos FA, Bastos EMA, Uzeda B et al (2002) Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria. J Ethnopharmacol 80:1–7CrossRefGoogle Scholar
  36. Semizoglu MA (1979) Modern poplar development handbook. Poplar and Fast-Growing Forest Trees Research Institute, Izmit, TurkeyGoogle Scholar
  37. Sentsov MF, Braslowskii VB, Kurkin VA et al (1997) Comparative study of the component composition of buds of some Populus L. Species with the HPLC method. Rastit Resur 33:51–56Google Scholar
  38. Silici S, Koc AN (2006) Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Lett Appl Microbiol 43:318–324CrossRefGoogle Scholar
  39. Steele J, Ronald W (1973) Phytochemistry of the Salicaceae VI. The use of a gas-liquid chromatographic screening test for the chemotaxonomy of Populus species. J Chromatogr 84:315–318CrossRefGoogle Scholar
  40. Woisky RG, Giesbrecht AM, Salatino A (1994) Atividade antibacteriana de uma formulaçao preperada a partir de propolis de Apis mellifera L. Rev Farm Bioquim Univ Sao Paulo 30:19–21Google Scholar
  41. Wollenweber E (1975) Flavonoid muster im Knospenexkret der Betulaceen. Biochem Syst Ecol 3:47– 52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Gülhan Vardar-Ünlü
    • 1
  • Sibel Silici
    • 2
  • Mehmet Ünlü
    • 1
  1. 1.Department of Microbiology, Faculty of MedicineCumhuriyet UniversitySivasTurkey
  2. 2.Department of Beekeeping, S. Çıkrıkçıoğlu Vocational CollegeErciyes UniversityKayseriTurkey

Personalised recommendations