The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus

Original Paper


The effect of copper (II) ions on the growth of three brown-rot fungi, six white-rot fungi and one blue-stain fungus in solid medium was evaluated. The fungi were grown in malt extract agar with different concentrations of copper added, and the radial growth rate was determined. At the end of the incubation period, the mycelial biomass and the media pH were determined. The white-rot and blue-stain fungus grew up to 3 mM and 6 mM copper, respectively and the brown-rot fungi were the only ones that grew up to 10 mM, with higher growth rates than those shown by the other fungi. In general, the brown-rot fungi produced greater acidification in the culture media than the white-rot fungi and blue-stain fungus, and the acidification increased when the amount of copper was increased. The biomass production for the different species, in the absence or presence of copper, was not related to the radial growth rate, and the fungal species that produced the greatest biomass amounts did not correspond to those that presented the highest growth rates. The brown-rot fungi Wolfiporia cocos and Laetiporus sulfureus and blue-stain fungus Ophiostoma sp. demonstrated greater tolerance to high copper concentrations in solid medium than the white-rot fungi, determined as radial growth rate. On the other hand, the highest biomass producers in solid medium with copper added were the white-rot fungi Ganoderma australe and Trametes versicolor and the brown-rot fungus Gloeophyllum trabeum.


Copper tolerance Blue-stain fungus Brown-rot fungi White-rot fungi Wood-rotting fungi 



The authors kindly thank David Navias and Daniel Chávez for their assistance with statistical analysis.


  1. Bagley ST, Richter DL (2002) Biodegradation by brown-rot fungi. In: Osiewacz HD (ed) The Mycota × Industrial Applications. Springer-Verlag, Berlin, pp 327–341Google Scholar
  2. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enz Microbial Technol 32:78–91CrossRefGoogle Scholar
  3. Baldrian P, Gabriel J (1997) Effect of heavy metals on the growth of selected wood-rotting basidiomycetes. Folia Microbiol 42:521–523Google Scholar
  4. Baldrian P, Gabriel J (2002) Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia 94:428–436CrossRefGoogle Scholar
  5. Baldrian P, Gabriel J (2003) Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett 220:235–240CrossRefGoogle Scholar
  6. Baldrian P, der Wiesche C, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478CrossRefGoogle Scholar
  7. Bell A, Wheeler M (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  8. Bennet J, Wunch K, Faison B (2002) Use of Fungi Biodegradation. In: Hurst CJ (ed) Manual of Environmental Microbiology, 2nd edn. ASM Press, Washington DC, pp 960–971Google Scholar
  9. Chapman W, Berch S, Ballard T (1990) In vitro growth of ectomycorrhizal on dilute agar. Mycologia 82:526–527CrossRefGoogle Scholar
  10. Clausen C, Green III F, Woodward B, Evans J, De Groot R (2000) Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos. Int Biodeterior Biodegrad 46:69–76CrossRefGoogle Scholar
  11. Collett O (1992) Comparative tolerance of the brown-rot fungus Anthrodia vaillantii (DC.: Fr.) Ryv. Isolates to copper Holzforschung 46:293–298Google Scholar
  12. D`Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contamined with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36CrossRefGoogle Scholar
  13. De Groot RC, Woodward B (1999) Using copper-tolerant fungi to biodegrade wood treated with copper-based preservatives. Int Biodeterior Biodegrad 44:17–27CrossRefGoogle Scholar
  14. Falih AM (1997) Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium. Biores Technol 60:87–90CrossRefGoogle Scholar
  15. Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118Google Scholar
  16. Gabriel J, Baldrian P, Hladíková K, Háková M (2001) Copper sorption by native and modified pellets of wood-rotting basidiomycetes. Lett Appl Microbiol 32:194–198CrossRefGoogle Scholar
  17. Gadd G (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60CrossRefGoogle Scholar
  18. Gadd G (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microbial Physiol 11:47–91CrossRefGoogle Scholar
  19. Green III F, Clausen C (2005) Copper tolerance of brown-rot fungi: Oxalic acid production in southern pine treated with arsenic-free preservatives. Int Biodeterior Biodegrad 56:75–79CrossRefGoogle Scholar
  20. Harnett D (1987) Introducción al análisis estadístico. Editorial Iberoamericana. Delaware, USAGoogle Scholar
  21. Held B, Thwaites J, Farrel R, Blanchette R (2003) Albino strains of Ophiostoma species for biological control of sap-staining fungi. Holzforschung 57:237–242CrossRefGoogle Scholar
  22. Humar M, Pohleven F, Amartey S (2004a) Influence of boron in CCB formulation on growth and decay capabilities of copper tolerant fungi. Holz Roh Werkst 62:177–180CrossRefGoogle Scholar
  23. Humar M, Bokan M, Sentjurc M, Amartey S, Kalan P, Pohleven F (2004b) Fungal bioremediation of copper, chromium and boron treated wood as studied by electron paramagnetic resonance. Int Biodeterior Biodegrad 53:25–32CrossRefGoogle Scholar
  24. Humar M, Bucar B, Pohleven F (2006) Brown- rot decay of copper-impregnated wood. Int Biodeterior Biodegrad 58:9–14CrossRefGoogle Scholar
  25. Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown-rot fungi. Int Biodeterior Biodegrad 39:54–179 Google Scholar
  26. Jentschke G, Godbold D (2000) Metal toxicity and ectomycorrhizal. Physiol Plant 109:107–116CrossRefGoogle Scholar
  27. Machuca A, Napoleão D, Milagres AMF (2001) Detection of metal-chelating compounds from wood-rotting fungi Trametes versicolor and Wolfiporia cocos. World J Microbiol Biotechnol 17:687–690CrossRefGoogle Scholar
  28. Mandal TK, Baldrian P, Gabriel J, Nerud Z, Zadrazil F (1998) Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere 36:435–440 CrossRefGoogle Scholar
  29. Matheus D, Ramos V, Gomes K (2000) Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World J Microbiol Biotechnol 16:415–421CrossRefGoogle Scholar
  30. Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enz Microbial Technol 30:562–565CrossRefGoogle Scholar
  31. Morrell JJ (1991) Copper tolerant fungi: A brief review on their effects and distribution. Am Wood-Preserv Assoc 87:265–270Google Scholar
  32. Novotný C, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Ŝaŝek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551CrossRefGoogle Scholar
  33. Pohleven F, Humar M, Amartey S, Benedik J (2002) Tolerance of wood decay fungi to commercial copper based wood preservatives. IRG/WP 02-3029, 12Google Scholar
  34. Pointing S, Bucher V, Vrijmoed L (2000) Dye decolorization by sub-tropical basidiomyceous fungi and the effect of metals on decolorizing ability. World J Microbiol Biotechnol 16:199–205CrossRefGoogle Scholar
  35. Santiago-Martínez G (1992) Pruebas de crecimiento, síntesis in vitro y caracterización de 10 cepas de hongos ectomicorrizógenos. Tesis de Maestría, Universidad Nacional Autónoma de México, México DFGoogle Scholar
  36. Tobin J, White C, Gadd G (1994) Metal accumulation by fungi: applications en environmental biotechnology. J Ind Microbiol Biotechnol 13:126–130Google Scholar
  37. Vives I, Ide S, Peredo H (2004) Ensayos de eficacia cuarentenaria de tres formulaciones de antimanchas comercializadas en Chile para un proceso simulado de exportación de madera aserrada de Pinus radiata. Bosque 25:79–83Google Scholar
  38. Woodward B, De Groot R (1999) Tolerance of Wolfiporia cocos isolates to copper in agar media. For Prod J 49:87–94Google Scholar
  39. Yetis U, Ozcengiz G, Dilek FB, Ergen N, Dolek A (1998) Heavy metal biosorption by white-rot fungi. Water Sci Technol 38:323–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Ingeniería de Industrias ForestalesUniversidad Nacional Experimental de GuayanaUpataVenezuela
  2. 2.Departamento ForestalUniversidad de ConcepciónLos ÁngelesChile

Personalised recommendations