Advertisement

Heat tolerant fungi and applied research: Addition to the previously treated group of strictly thermotolerant species

  • Jean Mouchacca
Original Paper

Abstract

Heat tolerant fungi are organisms that may perform bioconversion processes and produce industrially important metabolites. They may either be obligate thermophiles or simple thermotolerants. The present document is the continuation of a critical note on thermotolerant fungi erroneously reported in the literature as possessing thermophilic attributes. Fifty strictly thermotolerant taxa are here considered. Some of their binomials have only recently been introduced in the scientific literature. The reported thermotolerant species are grouped according to broad taxonomic categories. The nomenclature of zygomycetous taxa and anamorphic fungi is straightforward, as usually only one binomial is available or only one state is produced in culture respectively. For Ascomycetes regularly producing in culture a conidial state, the name of the sexual state (teleomorph) should be used to designate the organism even when a binomial is available for the anamorph; this prevents the practice of interchangeably using the name of either states of the same fungus. When ascomycetous taxa produce the anamorph regularly and the teleomorph only under specific cultural conditions, the name of the anamorph could be preferentially selected. The goal is to introduce uniformity in name citations of fungi, particularly in the literature of applied research. Each species is reported under its taxonomically correct name, either the original binomial or the latest combined binomial after generic transfer(s). Known synonyms are also specified. Maximum efforts were undertaken to trace updated information on the taxonomic position of these fifty strict thermotolerant species. For each, information on the type material, morphological features distinguishing it from related members of the genus (and when necessary a generic taxonomic assessment) and, finally, salient ecological features including heat tolerance levels are given. For some information on their biotechnological use is also provided. Overall 86 strictly thermotolerant fungi are so far documented in the corresponding published and present contributions; however, this figure should not be regarded as exhaustive for the group. Among these 86 taxa ascomycetous fungi (46) presently outnumber anamorphic microfungi (28) but their relevant figures should be regarded as provisional. Only 12 zygomycetous species proved to be strict thermotolerants. Further cardinal temperature growth values established for these 86 thermotolerants disclose no pattern linked to their broad taxonomic categories. Standardized growth temperature curves at increments smaller than 5 °C have to be performed to assess conclusively variability in growth temperature relationships. Several heat tolerant fungi are widely used in industry; however, more research is needed to explore the applied potential of these particular organisms. An exhaustive document on the biodiversity of heat tolerant fungi also awaits production. It would be informative in relation to the global warming process of the earth.

Keywords

Fungi Heat tolerance Growth Temperature Thermotolerant Thermophiles Biodiversity Taxonomy Ascomycetes Anamorphic fungi Zygomycetes Applied research Global warming 

Notes

Acknowledgements

Paul KIRK (CAB International, United Kingdom) and Orlando PETRINI (Switzerland), painstakingly availed to upgrade the various aspects of the present manuscript. The material of this contribution was partly used in a lecture given at the VIIth International Mycological Congress, Oslo, 2002. The Gulbenkian Foundation (Portugal) is warmly thanked for financial support to attend the meeting.

References

  1. Abdel-Hafez SII (1982) Thermophilic and thermotolerant fungi in the desert soils of Saudi Arabia. Mycopathologia 80:15–20CrossRefGoogle Scholar
  2. Abdel-Hafez SII, Abdel-Hafez AII, Abdel-Kader MIA (1983) Composition of the fungal flora of Syrian soils. IV. Thermophilic fungi. Mycopathologia 81:177–181CrossRefGoogle Scholar
  3. Abdullah SK, Al-Bader SM (1990) On the thermophilic and thermotolerant mycoflora of Iraq. Sydowia 42:1–7Google Scholar
  4. Al-Musallam A (1980) Revision of the black Aspergillus species. Ph.D. thesis,Utrecht (cited in Table 1)Google Scholar
  5. Ames LM (1949) New cellulose destroying fungi isolated from military material and equipment. Mycologia 41:637–648CrossRefGoogle Scholar
  6. Ames LM (1950) New species of cellulose decomposing fungi. II. Mycologia 42:642–646CrossRefGoogle Scholar
  7. Ames LM (1963) A monograph of the Chaetomiaceae. U.S. Army Research Division, Series 2. pp 125Google Scholar
  8. Apinis AE (1963) Occurrence of thermophilous microfungi in certain alluvial soils near Nottingham. Nova Hedwigia 5:57–78Google Scholar
  9. Arx JA von (1970) The genera of fungi sporulating in pure culture. J. Cramer, Lehre. pp 288Google Scholar
  10. Arx JA von (1973a) Further observations on Sporotrichum and some similar fungi. Persoonia 7:127–130Google Scholar
  11. Arx JA (1973b) Ostiolate and non-ostiolate Pyrenomycetes. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen, Series C 76:289–296Google Scholar
  12. Arx JA von (1987) A re-evaluation of the Eurotiales. Persoonia 13:273–300Google Scholar
  13. Arx JA von, Guarro J, Figueras MJ (1986) The Ascomycete Genus Chaetomium. Beihefte zur Nova Hedwigia 84:1–162Google Scholar
  14. Arx JA von, Figueras MJ, Guarro J (1988) Sordariaceous Ascomycetes without ascospore ejaculation. Beihefte zur Nova Hedwigia 94:1–104Google Scholar
  15. Benjamin CR (1955) Ascocarps of Penicillium and Aspergillus. Mycologia 47:669–87CrossRefGoogle Scholar
  16. Beyma Thoe Kingma FH van (1931) Ueber einen neuen Rhizopus, Rhizopus bovinus nov. spec. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen, Series C 29:38–40Google Scholar
  17. Carmichael JW (1962) Chrysosporium and some other aleuriosporic Hyphomycetes. Can J Bot 40:1137–1174Google Scholar
  18. Cannon PF (1986) A revision of Achaetomium, Achaetomiella, and some similar species of Chaetomium. Trans Br Mycol Soc 87:45–76Google Scholar
  19. Chahal DS, Hawksworth DL (1976) Chaetomium cellulolyticum, a new thermotolerant and cellulolytic Chaetomium. I. Isolation, description and growth rate. Mycologia 68:600–610CrossRefGoogle Scholar
  20. Christensen M, States JS (1982) Aspergillus nidulans group: Aspergillus navahoensis, and a revised synoptic key. Mycologia 74:226–235CrossRefGoogle Scholar
  21. Cooney DG, Emerson R (1964) Thermophilic fungi. An account of their biology, activities and classification. W.H. Freeman & Co., San Francisco & London, pp 108Google Scholar
  22. Costantin J (1892) Sur quelques maladies du blanc de champignons vol 114. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences, Paris, pp 849–851Google Scholar
  23. Dick MW (2001) Straminipilous Fungi. Systematics of the Peronosporomycetes including accounts of the Marine Straminipilous Protists, the Plasmodiophorids and similar organisms. Kluwer Academic Publishers, pp 670Google Scholar
  24. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vols. 1 & 2. Academic Press, LondonGoogle Scholar
  25. Eidam E (1883) Zur Kenntniss der Entwicklung bei den Ascomyceten. III. Sterigmatocystis nidulans n. sp. In: Cohn FS (ed) Beiträge zur Biologie der Pflanzen, vol 3. pp 392–411, Plates 20–22Google Scholar
  26. Ellis DH (1981) Ascocarp morphology and terminal hair ornamentation in thermophilic Chaetomium species. Mycologia 73:755–773CrossRefGoogle Scholar
  27. Emmons CW (1932) The development of the ascocarp in two species of Thielavia. Bull Torrr Bot Club 59:415–422CrossRefGoogle Scholar
  28. Evans HEC (1971) Thermophilous fungi of coal spoil tips. Trans Br Mycol Soc 57:255–266CrossRefGoogle Scholar
  29. Fergus CL, Amelung RM (1971) A new thermotolerant species of Chaetomium from mushroom compost. Mycologia 63:1212–1217CrossRefGoogle Scholar
  30. Frisvad JC, Filtenborg O, Samson RA, Stolk AC (1990) Chemotaxonomy of the genus Talaromyces. Antonie von Leeuwenhoek 57:179–189CrossRefGoogle Scholar
  31. Greuter W (Chairman), Barrie FR, Burdet H-M, Demoulin V, Filguerias TS, McNeill J, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland HJ, Hawksworth DL (eds) (2000) International Code of Botanical Nomenclature (Saint-Louis Code), adopted by the Sixteen International Botanical Congress St. Louis, Missouri, July-August 1999/prepared and edited by Königstein. pp 474. Koeltz Scientific Books. ISBN 3–90414422–7Google Scholar
  32. Hammill TM (1970) Paecilomyces clavisporus sp. nov., Trichoderma saturnisporum sp. nov., and other noteworthy soil fungi from Georgia. Mycologia 62:107–122CrossRefGoogle Scholar
  33. Horie EY, Udagawa S, Abdullah SK, Al-Bader SM (1990) Emericella similis, a new species from Iraqi soil. Trans Mycol Soc Jpn 31:425–430 (now Mycoscience)Google Scholar
  34. Johri BN, Satyanarayana T, Olsen J (eds) (1999) Thermophilic moulds in biotechnology. Kluwer Academic Publishers, Dordrecht/Boston/London. pp 354Google Scholar
  35. Kamyschko OP (1965) Ascomycetes novi e terris Asiae Media. Novosti Sistematiki Vysshikh i nizshikh Rastenii, Nauka. Moskow-Leningrad 1965:115–122Google Scholar
  36. Kirk PM, Cannon PF, David JC, Stalpers JA (eds) (2001) Ainsworth & Bisby’s Dictionary of the fungi, 9th edn. CAB International, Wallingford, Oxon, United Kingdom, pp 655Google Scholar
  37. Kozakiewicz Z (1989) Aspergillus species on stored products. Mycol Papers 161:1–188Google Scholar
  38. Lodha BC (1964) Studies on coprophilous fungi. I. Chaetomium. J Indian Bot Soc 43:121–140Google Scholar
  39. Lodha BC (1973) Generic concepts in some ascomycetes occurring on dung. In: Subramanian CV (eds) Proceedings of the international symposium on taxonomy of fungi. 1973, pp 241–257, MadrasGoogle Scholar
  40. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488CrossRefGoogle Scholar
  41. Malloch D, Cain RF (1971) Four new genera of cleistothecial ascomycetes with hyaline ascospores. Can J Bot 49:847–854Google Scholar
  42. Malloch D, Cain RF (1972) New species and combinations of cleistothecial Ascomycetes. Can J Bot 50:61–72Google Scholar
  43. Malloch D, Sigler L (1988) The Eremomycetaceae (Ascomycotina). Can J Bot 66:1929–1932Google Scholar
  44. Mehrotra BS (1985) Thermophilic Fungi—Biological enigma and tools for the biotechnologist and biologist. Indian Phytopathol 38:211–229Google Scholar
  45. Mehrotra BS, Bhattacharjee M (1966) A new variety of Thielavia sepedonium Emmons. Antonie van Leeuwenhoek 32:389–392CrossRefGoogle Scholar
  46. Meyer JA, Lanneau C (1967) Deux nouvelles espèces de Chaetomium des sols africains. Bulletin Trimestriel de la Société Mycologique de France 83:318–323Google Scholar
  47. Millner PD (1977) Radial growth responses to temperature by 58 Chaetomium species, and some taxonomic relationships. Mycologia 69:492–502CrossRefGoogle Scholar
  48. Moubasher AH, Moustafa AF (1972) Aspergillus egyptiacus sp. nov. Egypt J Bot 15:153–154Google Scholar
  49. Mouchacca J (1973) Les Thielavia des sols arides : espèces nouvelles et analyse générique. Bulletin Trimestriel de la Société Mycologique de France 89:295–311Google Scholar
  50. Mouchacca J (1979) Desertella, un nouveau genre d’Hyphomycète de sols arides. Revue de Mycologie, Paris 43:71–79 (now Cryptogamie, Mycologie)Google Scholar
  51. Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogamie, Mycologie 18:19–69Google Scholar
  52. Mouchacca J (1999) Thermophilic fungi: present taxonomic concepts. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Kluwer Academic Press, pp 43–83 ISBN 0–7923–5957–7Google Scholar
  53. Mouchacca J (2000a) Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes. World J Microbiol Biotechnol 16:869–880CrossRefGoogle Scholar
  54. Mouchacca J (2000b) Thermophilic fungi and applied research work: a synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–888CrossRefGoogle Scholar
  55. Mouchacca J, Gams W (1993) The Hyphomycete genus Cladorrhinum and its teleomorph connections. Mycotaxon 48:415–440Google Scholar
  56. Moustafa AF (1975) A new species of Gilmaniella from the soil of Kuwait. Persoonia 8:332–333Google Scholar
  57. Moustafa AF, Abdel-Wahid OA (1990a) Chaetomiopsis, a new perithecial ascomycete genus from Egyptian soils. Mycologia 82:129–131CrossRefGoogle Scholar
  58. Moustafa AF, Abdel-Wahid OA (1990b) Thielavia aegyptiaca, a new thermotolerant ascomycete from Egyptian soils. Persoonia 14:173–175Google Scholar
  59. Moustafa AF, Sharkas MS, Kamel SM (1976) Thermophilic and thermotolerant fungi in the desert and soil-marsh soils of Kuwait. Nor J Bot 23:213–220Google Scholar
  60. Nakamura K, Nakamura M, Hatai K, Zafran (1996) Lagenidium infection in eggs and larvae of mangrove crab (Scylla serrata) produced in Indonesia. Mycoscience 36:399–404CrossRefGoogle Scholar
  61. Natarayan K (1971) Studies on rhizosphere fungi I. Proc Indian Acad Science, B 74:255–264Google Scholar
  62. Nozawa K, Seyea H, Nakajima S, Udagawa S, Kawai K-I (1987) Studies on Fungal Products. Part 10. Isolation and structures of novel Bicoumarins, Desertorins A, B, and C from Emericella desertorum. J Chem Soc, Perkin Trans 1:1735CrossRefGoogle Scholar
  63. Olliver M, Smith G (1933) Byssochlamys fulva sp. nov. J Bot, London 71:196–197Google Scholar
  64. O’Neill B, Oppenheimer B (2002) Dangerous climate impacts and the Kyoto Protocol. Science 296:1971–1972CrossRefGoogle Scholar
  65. Oorschot CAN van (1980) A revision of Chrysosporium and allied genera. Stud Mycol, Baarn 20:1–89Google Scholar
  66. Oudemans CAJA, Koning CJ (1902) Prodrome d’une flore mycologique obtenue par la culture sur gélatine préparée de la terre humeuse du Spanderwoud près de Bussum. Archives néerlandaises des sciences exactes et naturelles, Sér 2(7):266–298Google Scholar
  67. Pitt JI (1979a) Geosmithia gen. nov., for Penicillium lavendulum and related species. Can J Bot 57:2021–2030Google Scholar
  68. Pitt JI (1979b) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London, pp 634Google Scholar
  69. Pitt JI, Samson RA, Frisvad JC (2000) List of accepted species and their synonyms in the Family Trichocomaceae. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Aspergillus and Penicillium classifications. Harwood Academic Publishers. pp 9–49Google Scholar
  70. Rai JN, Mukerji KG (1962) A new species of Chaetomium from Indian soils. Can J Bot 40:857–860CrossRefGoogle Scholar
  71. Rai JN, Tewari JP (1962) Chaetomium arcuatum spec. nov. and C. lucknowense spec. nov. two new species fom Indian soils. Can J Bot 40:1379–1384Google Scholar
  72. Ram C (1968) Timber-attacking fungi from the state of Maranhão, Brazil. Some new species of Paecilomyces and its perfect state Byssochlamys West. Nova Hedwigia 16:305–314Google Scholar
  73. Raper KB, Fennell DI (1965) The genus Aspergillus. The Williams & Wilkins Company, Baltimore. pp 686Google Scholar
  74. Rao Rama P, Reddy Ram MA (1967) Chaetomium osmaniae nom. nov. Mycopathologia Mycologia Applicata 31:74Google Scholar
  75. Rodriguez K, Stchigel AM, Cano JF, Guarro J (2004) A new species of Achaetomium from soil. Stud Mycol,Utrecht 50:77–82Google Scholar
  76. Saito K (1904) Eine neue Art der Chinesischen Hefe. Zentrallblatt für die Bakteriologie, Parasitenkunde, Infektionkrankheiten und Hygiene, Abteilung 2(13):153–161Google Scholar
  77. Samson RA (1974) Paecilomyces and some allied hyphomycetes. Stud Mycol, Baarn 6:1–119Google Scholar
  78. Samson RA, Abdel-Fattah HM (1978) A new species of Talaromyces and a discussion of some recently described taxa. Persoonia 9:501–504Google Scholar
  79. Samson RA, Gams W (1985) Typification of the species of Aspergillus and associated teleomorphs. In: Samson RA, Pitt JI (eds) Advances in Penicillium and Aspergillus Systematics. NATO ASI Series 102:31–54Google Scholar
  80. Samson RA, Luiten B (1975) Eleutherascus tuberculatus, a new heat-resistant ascomycete. Trans Br Mycol Soc 64:338–340Google Scholar
  81. Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie van Leeuwenhoek 40:121–131CrossRefGoogle Scholar
  82. Samson RA, Mouchacca J (1975a) Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie van Leeuwenhoek 41:343–351CrossRefGoogle Scholar
  83. Samson RA, Mouchacca J. (1975b) Two new soil-borne cleistothecial Ascomycetes. Can J Bot 53:1634–1639CrossRefGoogle Scholar
  84. Samson RA, Tansey MR (1975) Byssochlamys verrucosa sp. nov. Trans Br Mycol Soc 65:512–514Google Scholar
  85. Sappa F (1955) Nuove specie di Aspergillus dei tereni forestali somali. Allionia (Bolletino dell’Istituto dell’Orto Botanico dell’Università di Torino) 2:79–95Google Scholar
  86. Schipper MAA (1984) A revision of the genus Rhizopus. I. The Rh. stolonifer-group and Rh. oryzae. Stud Mycol, Baarn 25:1–19 Google Scholar
  87. Schipper MAA, Stalpers JA (1984) A revision of the genus Rhizopus II. The Rhizopus microsporus group. Stud Mycol, Baarn 25:19–34Google Scholar
  88. Stchigel AM, Guarro J (1997) A new species of Emericella from Indian soil. Mycologia 89:937–941CrossRefGoogle Scholar
  89. Stchigel AM, Figueras L, Cano J, Guarro J (2002) New species of Thielavia, with a molecular study of representative species of the genus. Mycol Res 106:975–983CrossRefGoogle Scholar
  90. Stchigel AM, Sagués M, Cano J, Guarro J (2000) Three new thermotolerant species of Corynascus from soil, with a key to the known species. Mycol Res 104:897–887CrossRefGoogle Scholar
  91. Stolk AC, Evans HC, Nilsson T (1969) Penicillium argillaceum sp. nov., a thermotolerant Penicillium. Trans Br Mycol Soc 53:307–311Google Scholar
  92. Stolk AC, Samson RA (1971) Studies on Talaromyces and related genera I. Hamigera gen. nov. and Byssochlamys. Persoonia 6:341–357Google Scholar
  93. Swift ME (1932) A new ascocarpic species of Penicillium. Bull Torr Bot Club 59:221–227CrossRefGoogle Scholar
  94. Takeda Y (1935) On two strains of Rhizopus developing at high temperatures. J Agricult Chem Soc Japan 11:841–849 (In Japanese)Google Scholar
  95. Tubaki K (1955) Studies on the Japanese Hyphomycetes II. Fungicolous Group. Nagaoa 5:11–40Google Scholar
  96. Udagawa S (1960) A taxonomic study of the Japanese species of Chaetomium. J General Appl Microbiol 6:233–251Google Scholar
  97. Udagawa S (1980) New or noteworthy Ascomycetes from Southeast Asian soil. I. Trans Mycol Soc Jpn 21:17–34Google Scholar
  98. Udagawa S, Muroi T (1979) Some interesting species of Ascomycetes from imported spices. Trans Mycol Soc Jpn 20:13–22Google Scholar
  99. Udagawa S, Sugiyama Y (1982) New records and new species of ascomycetous microfungi from Nepal, a preliminary report on the expedition of 1980. Reports on the Cryptogamic Study in Nepal, March (1982) (Miscellaneous Publication of the National Science Museum, Tokyo): 11–46Google Scholar
  100. Ueda S, Udagawa S (1984) Sagenoma ryukyuensis, a new thermotolerant ascomycete. Mycotaxon 20:499–504Google Scholar
  101. Vuillemin P (1927) Sartorya, nouveau genre de Plectascinées angiocarpes. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences, Paris 184:136–137Google Scholar
  102. Warcup JH, Baker KF (1963) Occurrence of dormant ascospores in soil. Nature 197:1317–1318CrossRefGoogle Scholar
  103. Weitzman I, McGough DA, Rinaldi MG, Della-Latta P (1996) Rhizopus schipperae sp. nov., a new agent of zygomycosis. Mycotaxon 59:217–225Google Scholar
  104. Westling R (1909) Byssochlamys nivea en föreningslänk mellan familjerna Gymnoascaceae och Endomycetaceae. Svensk Botanisk Tidskrift 3:125–137Google Scholar
  105. Winter G (1884) Pilze. In Rabenhorst L. Kryptogamenflora von Deutschland, Oesterreich und dn Schweiz Zweite Auflage. II. Abtheilung. Ascomgaten: Gymnoasceen und Pyrenomyceten. p 62Google Scholar
  106. Yaguchi T, Someya A, Miyadoh S, Udagawa S (1994a) A new variety of Talaromyces wortmannii and some observation on Talaromyces assiutensis. Mycoscience 35:63–68CrossRefGoogle Scholar
  107. Yaguchi T, Someya A, Udagawa S (1994b) Two new species of Talaromyces from Taiwan and Japan. Mycoscience 35:249–255CrossRefGoogle Scholar
  108. Yaguchi T, Udagawa S, Nishimura K (2005) Geosmithia argillacea is the anamorph of Talaromyces eburneus as a heat resistant fungus. Cryptogamie, Mycologie 26:131–141Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.USM 602 Taxonomie & Collections, Département de Systématique & Evolution (Laboratoire de Cryptogamie)Muséum National d’Histoire NaturelleParis Cedex 05France

Personalised recommendations