Bacterial laccases

Original Paper

Abstract

Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are polyphenol oxidases (PPO) that catalyze the oxidation of various substituted phenolic compounds by using molecular oxygen as the electron acceptor. The ability of laccases to act on a wide range of substrates makes them highly useful biocatalysts for various biotechnological applications. To date, laccases have mostly been isolated and characterized from plants and fungi, and only fungal laccases are used currently in biotechnological applications. In contrast, little is known about bacterial laccases, although recent rapid progress in the whole genome analysis suggests that the enzymes are widespread in bacteria. Since bacterial genetic tools and biotechnological processes are well established, so developing bacterial laccases would be significantly important. This review summarizes the distribution of laccases among bacteria, their functions, comparison with fungal laccases and their applications.

Keywords

Bacterial laccases Occurrence Comparison with fungal laccases Applications 

References

  1. Alexandre G, Zhulin LB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42PubMedCrossRefGoogle Scholar
  2. Alexandre G, Bally R, Taylor BL, Zhulin IB (1999) Loss of cytochrome oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum. J Bacteriol 181:6730–6738PubMedGoogle Scholar
  3. Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball SA, Hernández M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958PubMedCrossRefGoogle Scholar
  4. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multi- copper oxidase required for ferrous iron uptake. Cell 76:403–410PubMedCrossRefGoogle Scholar
  5. Bains J, Capalash N, Sharma P (2003) Laccase from a non- melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial waste water drained soil. Biotechnol Lett 25:1155–1159PubMedCrossRefGoogle Scholar
  6. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191–197PubMedCrossRefGoogle Scholar
  7. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333PubMedCrossRefGoogle Scholar
  8. Bligny R, Douce R (1983) Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme. J Biochem 204:489–496Google Scholar
  9. Bourbonnais R, Paice M (1990) Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102CrossRefGoogle Scholar
  10. Bourbonnais RE, Paice MG (1992) Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2’-azinobis (3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 36:823–827Google Scholar
  11. Bourbonnais R, Paice MG (1996) Enzymatic delignification of Kraft pulp using laccase and a mediator. J Technol Assoc Pap Pulp Ind 79:199–204Google Scholar
  12. Brouwers GJ, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-deJong EW (1999) CumA, a gene encoding a multicopper oxidase, is involved in Mn -oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768PubMedGoogle Scholar
  13. Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Molecular gene and transport analysis of the copper resistance determinant (pco) from Escherichia coli plasmid pRJ 1004. Mol Microbiol 17:1153–1166PubMedCrossRefGoogle Scholar
  14. Cai W, Martin R, Lemaure B, Leuba JL, Petiard V (1993) Hydroxy-indoles: a new class of laccase substrates. Plant Physiol Biochem 31:441–445Google Scholar
  15. Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784PubMedCrossRefGoogle Scholar
  16. Cha J, Cooksey DA (1991) Copper resistance in Pseudomonas syringae by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915–8919PubMedCrossRefADSGoogle Scholar
  17. Chefetz B, Chen Y, Hadaar Y (1998) Purification and characterization of laccase from Chaetomium thermophillum and its role in humification. Appl Environ Microbiol 64:3175–3179PubMedGoogle Scholar
  18. Claus H, Filip Z (1997) The evidence of a laccase-like activity in a Bacillus sphaericus strain. Microbiol Res 152:209–215Google Scholar
  19. Claus H, Faber G, Konig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678PubMedCrossRefGoogle Scholar
  20. Claus H (2003) Laccases and their occurrence in prokayotes. Arch Microbiol 179:145–150PubMedGoogle Scholar
  21. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olson GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 393:353–358ADSGoogle Scholar
  22. De Marco A, Roubelakis-Angelakis KA (1997) Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts. Phytochemistry 46:421–425CrossRefGoogle Scholar
  23. Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927CrossRefGoogle Scholar
  24. Driks A (2004) The Bacillus subtilis spore coat. Phytopathology 94:1249–1251CrossRefGoogle Scholar
  25. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Mol Biol 5:310–316CrossRefGoogle Scholar
  26. Eggert C, Temp U, Dean JFD, Eriksson KEL (1996) The lignolytic system of white rot fungus Pycnocarpus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158PubMedGoogle Scholar
  27. Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of Epo A, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677PubMedCrossRefGoogle Scholar
  28. Endo K, Hosono K, Beppu T, Ueda K (2002) A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148:1767–1776PubMedGoogle Scholar
  29. Enguita JF, Martins OL, Henriques OA, Carrondo AM (2003) Crystal structure of a bacterial endospore coat component. J Biol Chem 278:19416–19425PubMedCrossRefGoogle Scholar
  30. Faure D, Bouillant M, Bally R (1994) Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity. Appl Environ Microbiol 60:3413–3415PubMedGoogle Scholar
  31. Faure D, Bouillant M, Bally R (1995) Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Appl Environ Microbiol 61:1144–1146PubMedGoogle Scholar
  32. Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989PubMedCrossRefADSGoogle Scholar
  33. Francis CA, Tebo BM (2001) CumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 67:4272–4278PubMedCrossRefGoogle Scholar
  34. Freeman JC, Nayar PG, Begley TP, Villafranca JJ (1993) Stoichiometry and spectroscopic identity of copper centers in phenoxazonine synthase: a new addition for the blue copper oxidase family. Biochemistry 32:4826–4830PubMedCrossRefGoogle Scholar
  35. Froehner SC, Eriksson KE (1974) Purification and properties of Neurospora crassa laccase. J Bacteriol 120:458–465PubMedGoogle Scholar
  36. Ghindilis AL, Gavrilova VP, Yaropolov AI (1992) Laccase-based biosensor for determination of polyphenols: determination of catechols in tea. Biosens Bioelectron 7:127–131PubMedCrossRefGoogle Scholar
  37. Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere : evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210CrossRefGoogle Scholar
  38. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Mol Biol 9:601–605Google Scholar
  39. Held C, Kandelbauer A, Schroeder M, Cavaco-Paulo A, Guebitz GM (2005) Biotransformation of phenolics with laccase-containing baterial spores. Environ Chem Lett 3:66–69CrossRefGoogle Scholar
  40. Hough MA, Hall JF, Kanbi LD, Hasnain SS (2001) Structure of the M148Q mutant of rusticyanin at 1.5A: a model for the copper site of stellacyanin. Acta Crystallogr 57:355–360Google Scholar
  41. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430PubMedCrossRefGoogle Scholar
  42. Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394PubMedCrossRefGoogle Scholar
  43. Isono Y, Hoshino M (1989) Laccase-like activity of nucleoside oxidase in the presence of nucleosides. Agric Biol Chem 53:2197–2203Google Scholar
  44. Kawai S, Umezawa T, Shimada M, Higushi T (1988) Aromatic ring cleavage of 4,6-di(tert-butyl)guaiacol, a phenolic lignin model compound, by laccase of coriolus versicolor. FEBS Lett 236:309–311PubMedCrossRefGoogle Scholar
  45. Kim C, Lorenz WW, Hoopes T, Dean JFD (2001) Oxidation of siderophores by the muticopper oxidase encoded by the Escherichia coli yac K gene. J Bacteriol 183:4866–4875PubMedCrossRefGoogle Scholar
  46. Kumar SV, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394PubMedCrossRefGoogle Scholar
  47. Kumar A, Vanamala A, Kumar R (2005) Exploration of bacterial laccase in Pseudomonas stutzeri and its application in bleaching the wood pulp. FEBS J 272(s1)(N6-008P)Google Scholar
  48. Lee Y, Hendson M, Panopoulos NJ, Schroth MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small copper proteins and multicopper oxidases. J Bacteriol 176:173–188PubMedGoogle Scholar
  49. Lee FA, William CG (1987) Characterization of extracellular Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169: 1279–1285Google Scholar
  50. Lehman E, Harel E, Mayer AM (1974) Copper content and other characteristics of purified peach laccase. Phytochemistry 13:1713–1717CrossRefGoogle Scholar
  51. Malhotra K, Sharma P, Capalash N (2004) Copper and dyes enhance laccase production in γ-proteobacterim JB. Biotechnol Lett 26:1047–1050PubMedCrossRefGoogle Scholar
  52. Mann KG, Jenny RJ, Krishnaswamy S (1988) Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem 57:915–956PubMedCrossRefGoogle Scholar
  53. Marbach I, Harel E, Mayer AM (1984) Molecular properties of extracelular Botrytis cinerea laccase. Phytochemistry 13:2713–2717CrossRefGoogle Scholar
  54. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859PubMedCrossRefGoogle Scholar
  55. Mayer AM (1987) Polyphenol oxidases in plants-recent progress. Phytochemistry 26:11–20CrossRefGoogle Scholar
  56. Mellano MA, Cooksey DA (1988) Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv.tomato. J Bacteriol 170:2879–2883PubMedGoogle Scholar
  57. Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Eur J Biochem 187:341–352PubMedCrossRefGoogle Scholar
  58. Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425PubMedCrossRefGoogle Scholar
  59. Murugesan K (2003) Bioremediation of paper and pulp mill effluents. Indian J Exp Biol 41:1239–1248PubMedGoogle Scholar
  60. Niku-Paavola Karhunen E, Salola P, Raunio V (1988) Lignolytic enzymes of the white rot fungus Phlebia radiata. J Biochem 254:877–884Google Scholar
  61. Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, de Vrind-deJong EW, de Vrind JPM, Corstjens PLAM (1997) Partial purification and characterization of mangenese-oxidizing factors of Pseudomonas fluorescens GB-1. Appl Environ Microbiol 63:4793–4799PubMedGoogle Scholar
  62. Ouzounis C, Sander C (1991) A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins. FEBS Lett 279:73–78PubMedCrossRefGoogle Scholar
  63. Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86:550–557PubMedCrossRefGoogle Scholar
  64. Peter MG, Wollenberger U (1997) Phenol-oxidizing enzymes: mechanisms and applications in biosensors. EXS 80:63–82PubMedGoogle Scholar
  65. Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family in poplar. Eur J Biochem 259:485–495PubMedCrossRefGoogle Scholar
  66. Reinhammar B (1984) Laccase. In: Lontie R (ed.) Copper proteins and copper enzymes, vol 3. CRC Press, Boca Raton, pp 1–35Google Scholar
  67. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771PubMedCrossRefADSGoogle Scholar
  68. Rogalski J, Lundell T, Leonowicz A, Hatakka A (1991) Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions. Acta Microbiol Pol 40:221–234Google Scholar
  69. Ruijssenaars HJ, Hartmans S (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65:177–182PubMedCrossRefGoogle Scholar
  70. Sanchez-Amat A, Solano F (1997) A pluripotent polyphenol oxidase from the melanogenic marine Altermonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem Biophys Res Commun 240:787–792PubMedCrossRefGoogle Scholar
  71. Sanchez-Amat A, Lucas-Eilo P, Fernandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116PubMedGoogle Scholar
  72. Sannia G, Giardina P, Luna M, Rossi M, Buonocore V (1986) Laccase from Pleurotus ostreatus. Biotechnol Lett 8:797–800CrossRefGoogle Scholar
  73. Schneider P, Caspersen MB, Mondorf K, Halkier T, Skov LK, Østergaard PR, Brown KM, Brown SH, Xu F (1999) Characterization of a Coprinus cinereus laccase. Enzyme Microbial Technol 25:502–508CrossRefGoogle Scholar
  74. Solano F, Garcia E, Perez de Egea E, Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 a novel melanogenic marine bacterium. Appl Environ Microbiol 63: 3499–3506PubMedGoogle Scholar
  75. Spillman A (2003) Enzyme may protect sugar beets from leaf spot disease. Agric Res 51:14Google Scholar
  76. Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175PubMedCrossRefGoogle Scholar
  77. Takami H, Takaki Y, Chee G (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935PubMedCrossRefGoogle Scholar
  78. Van Waasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster invoved in manganese oxidation by spores of a marine Bacillus sp strain SG-1 . J Bacteriol 178:3517–3530PubMedGoogle Scholar
  79. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187PubMedCrossRefGoogle Scholar
  80. Wood DA (1980) Production, purification and properties of extracelluar laccase of Agaricus bisporus. J Gen Microbiol 117:327–338Google Scholar
  81. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614PubMedCrossRefGoogle Scholar
  82. Xu F (2005) Applications of oxidoreductases: Recent progress. Ind Biotechnol 1:38–50CrossRefGoogle Scholar
  83. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EL (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311PubMedGoogle Scholar
  84. Ygshinwa KK (2004) Japanese patent JP2004267177-A, Servicetech JapanGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of MicrobiologyPanjab UniversityChandigarhIndia
  2. 2.Department of BiotechnologyPanjab UniversityChandigarhIndia

Personalised recommendations