Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of low-temperature fermentation on yeast nitrogen metabolism

  • 1109 Accesses

  • 30 Citations


The aim of this study was to analyse the influence of low-temperature wine fermentation on nitrogen consumption and nitrogen regulation. Synthetic grape must was fermented at 25 and 13°C. Low-temperature decreased both the fermentation and the growth rates. Yeast cells growing at low-temperature consumed less nitrogen than at 25°C. Specifically, cells at 13°C consumed less ammonium and glutamine, and more tryptophan. Low-temperature seemed to relax the nitrogen catabolite repression (NCR) as deduced from the gene expression of ammonium and amino acid permeases (MEP2 and GAP1) and the uptake of some amino acids subjected to NCR (i.e. arginine and glutamine). Low-temperature influences the quantity and the quality of yeast nitrogen requirements. Nitrogen-deficient grape musts and low temperature are two of the main prevalent causes of sluggish fermentations and, therefore, the effects of both growth conditions on yeast metabolism are of considerable interest for wine making.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

  2. Aerny J (1996) Composés azotés des moûts et vins. Rev Suisse Viticulture Arboric Hortic 28:161–165

  3. Alexandre H, Rousseaux I, Charpentier C (1994) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 20:173–183

  4. Beltran G, Esteve-Zarzoso B, Rozes N, Mas A, Guillamon JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

  5. Beltran G, Novo M, Rozes N, Mas A, Guillamon JM (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4:625–632

  6. Beltran G, Novo M, Torija MJ, Poblet M, Rozes N, Guillamon JM, Mas A (2002) Fermentaciones a bajas temperaturas. Tecnología del vino 1:73–76

  7. DeLuna A, Avendano A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783

  8. Entian KD, Barnett J (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17:506–510

  9. Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (eds), Wine microbiology and biotechnology. Harwood Academic Publishers, Switzerland

  10. Gagiano M, Bauer FF, Pretorius IS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2:433–470

  11. Guillamon JM, van Riel NA, Giuseppin ML, Verrips CT (2001) The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res 1:169–175

  12. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Viticulture 21:97–129

  13. Leao C, van Uden N (1985) Effect of ethanol and other alkanols on the temperature of glucose transport and fermentation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 22:359–363

  14. Llauradó JM, Rozes N, Bobet R, Mas A, Constantí M (2002) Low temperature alcoholic fermentation in high sugar concentration grape must. J Food Sci 67:268–273

  15. Macdonald AG (1987) The role of membrane fluidity in complex processes under high pressure. In: Marquis RE, Zimmerman AM, Jannasch HW (eds) Current perspectives in high pressure biology. Academic Press, London

  16. Magasanik B (1992) Regulation of nitrogen utilization. In: Stratherm JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  17. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

  18. Nagayama A, Kato C, Abe F (2004) The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions. Extremophiles 8:143–149

  19. Novo M, Beltran G, Torija MJ, Poblet M, Guillamon JM, Mas A, Rozes N (2003a) Fermentaciones a bajas temperatras: análisis químico y sensorial. Tecnología del vino 2:51–55

  20. Novo M, Torija MJ, Beltran G, Rozes N, Mas A, Guillamon JM (2003b) Revisión sobre las fermentaciones vínicas a baja temperatura. Perspectivas de futuro. Tecnología del vino 3:38–43

  21. Riou C, Nicaud JM, Barre P, Gaillardin C (1997) Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13:903–915

  22. Sa-Correia I, van Uden N (1983) Temperature profiles of ethanol tolerance: effects of ethanol on the minimum and the maximum temperatures for growth of the yeasts Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnol Bioeng 25:1665–1667

  23. Sambrook J, Fritsch EF, Maniatis T (1989) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor, NY

  24. Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Cell Biol 15:5492–5502

  25. Sierkstra LN, Verbakel JM, Verrips CT (1992) Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. J Gen Microbiol 138:2559–2566

  26. ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

  27. Tokai M, Kawasaki H, Kikuchi Y, Ouchi K (2000) Cloning and characterization of the CSF1 gene of Saccharomyces cerevisiae, which is required for nutrient uptake at low temperature. J Bacteriol 182:2865–2868

  28. Torija MJ, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, Rozes N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136

  29. Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400

  30. Wiame JM, Grenson M, Arst HN Jr (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1–88

Download references


This work was supported by grant AGL2004-02307 from the Comisión Interministerial de Ciencia y Tecnología, Spain. The authors wish to thank the Language Service of the Rovira i Virgili University for revising the manuscript.

Author information

Correspondence to José M. Guillamón.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beltran, G., Rozès, N., Mas, A. et al. Effect of low-temperature fermentation on yeast nitrogen metabolism. World J Microbiol Biotechnol 23, 809–815 (2007).

Download citation


  • Low-temperature stress
  • Nitrogen regulation
  • S. cerevisiae
  • Wine fermentation