Isolation and Characterization of A Metal-resistant Pseudomonas Aeruginosa Strain

  • Chelliah Edward Raja
  • Kolandaswamy Anbazhagan
  • Govindan Sadasivam SelvamEmail author


The use of microorganisms to remove heavy metals from industrial effluent is an area of extensive research and development. Attempts have been made to isolate and characterize metal-resistant microorganisms from treated oil mill industry effluent wastewater samples. The metal-resistant organisms that showed values of minimum inhibitory concentration towards metals (Cd, Cr, Ni and Pb) ranging from 100 to 800 ppm level were screened. A potent metal-resistant organism, isolate BC15 from the wastewater samples was tentatively identified as Pseudomonas sp. Detailed analysis of morphological, biochemical and 16S rDNA sequence of the isolate revealed that it is closely related to Pseudomonas aeruginosa (94%). Pseudomonas BC15 was capable of absorbing 93% Ni, 65% Pb, 50% Cd and 30% Cr within 48 h from the medium containing 100 mg of each heavy metal per liter. The multiple metal tolerance of this strain was also associated with resistance to antibiotics such as ampicillin, tetracycline, chloramphenicol, erythromycin, kanamycin and streptomycin.


16S rDNA antibiotic resistance biosorption heavy metal resistance microorganisms oil mill industry effluent Pseudomonas aeruginosa 





Atomic force microscopy


Parts per million


Atomic absorption spectrophotometer


Revolution per minute


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmal M., Mohammad A., Yousuf R., Ahmad A., 1998 Adsorption behaviour of cadmium, zinc, nickel & lead from aqueous solution Mangifera indica seed shell. Indian Journal of Environmental Health 40, 15–26Google Scholar
  2. Al-Shahwani M.F., Jazrawi S.F., Al-Rawi E.H., Ayar N.S., 1984 Growth and heavy metal removal by Klebsiella aerogenes at different pH and temperatureJournal of Environmental Science and Health A 19, 445–457CrossRefGoogle Scholar
  3. Altschul S.F., Maddan T.L., Schaffer A.A., Zang J., Zang Z., Miller W., Lipman D.J., 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research 25, 3389–3402 CrossRefGoogle Scholar
  4. Basu M., Battacharya S., Paul A.K., 1997 Isolation and characterization of chromium-resistant bacteria from tannery effluent bacteriaBulletin of Environment and Contamination Toxicology 58, 535–542CrossRefGoogle Scholar
  5. Bhattacherjee J.W., Pathak S.P., Gaur A. 1988 Antibiotic and metal tolerance of coli form bacteria isolated from Gomti river water at Luknow cityJournal of General Applied Microbiology 34, 391–399Google Scholar
  6. Bolshakova A.V., Kiselyova. O.I., Filonov A.S., Frolova O., Yu Lyubchenko, Yu L., Yaminsky I.V., 2001 Comparative studies of bacteria with atomic force microscopy operating in different modesUltra Microscopy 68, 121–128Google Scholar
  7. Camargo F.A.O., Bento F.M., Okeke B.C., Frankenberger W.T., 2003 Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromateJournal of Environmental Quality 32, 1228–1233CrossRefGoogle Scholar
  8. Chen C.Y., Lin T.H., 1998 Nickel toxicity to human term placenta: in vitro study on lipid peroxidationJournal of Toxicology and Environmental Health A 54, 37–47CrossRefGoogle Scholar
  9. Claus D., Berkeley R.C.W., 1986 Genus Pseudomonas In Sneath P.H.A., Mair N.S., Sharpe M.E., eds. Bergey’s Manual of Systematic Bacteriology, Vol. 1 Williams & Wilkins Baltimore pp. 140–219. ISBN 0-683-04108-8Google Scholar
  10. Cunningham D.P., Lundie L.L., 1993 Precipitation of cadmium by Clostridium thermoaceticum Applied and Environmental Microbiology 59, 7–14Google Scholar
  11. Dabeka R.W., Mckenzie A.D., 1992 Total diet study of lead and cadmium in food composites: Preliminary investigationsJournal of AOAC International 75, 386–394Google Scholar
  12. Dhakephalkar P.K., Chopade B.A., 1994 High levels of multiple metal resistances and its correlation to antibiotic resistance in environmental isolates of Acinetobacter Biometals 7, 67–74CrossRefGoogle Scholar
  13. DeLeo P.C., Ehrlich H.L., 1994 Reduction of Hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous culturesApplied Microbiology and Biotechnology 40, 756–759CrossRefGoogle Scholar
  14. Felsenstein J., 1993 Estimating effective population-size from samples of Sequences-a bootstrap Monte-Carlo integration methodGenetic Research 60, 209–220CrossRefGoogle Scholar
  15. Friis N., Myers- Keith P., 1986 Biosorption of uranium and lead by Streptomyces longwoodensisBiotechnology and Bioengineering 28, 21–28CrossRefGoogle Scholar
  16. Ganguli A., Tripathi A.K., 2002 Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chrin two bioreactorsApplied Microbiology and Biotechnology 58, 416–420CrossRefGoogle Scholar
  17. Grass G., Fan B., Rosen B.P., Lemke K., Schlegel H.G., Rensing C., 2001 NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistanceJournal of Bacteriology 183, 2803–2807CrossRefGoogle Scholar
  18. Hassen A., Saidi N., Cherif M., Baudabous A., 1998 Resistance of environmental bacteria to heavy metals Bioresource Technology 64, 7–15CrossRefGoogle Scholar
  19. Ilhan S., Nourbakhsh M.N., Kilicarslan S., Ozdag H., 2004 Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticusTurkish Electronic Journal of Biotechnology 2, 50–57Google Scholar
  20. Jeanmougin F., Thompson J.D., Gouy M., Higgins D.G., Gibson T.J., (1998) Multiple sequence alignment with Clustal XTrends in Biochemical Sciences 23, 403–5CrossRefGoogle Scholar
  21. Karna R.R., Sajani L.S., Mohan P.M., 1996 Bioaccumulation and Biosorption of CO2+ by Neurospora crassa Biotechnology Letters 18, 1205–1208CrossRefGoogle Scholar
  22. Kalcher K., Kern W., Pietsch R., 1993 Cd and Pb in the smoke of the filter cigaretteScience of the Total Environment 128, 21–35CrossRefGoogle Scholar
  23. Kumar C.S., Sastry K.S., Mohan P.M., 1992 Use of wild type and nickel resistant Neurospora crassa for the removal of Ni2+ from aqueous mediumBiotechnology Letters 14, 1099–1102CrossRefGoogle Scholar
  24. Li Q., Wu S., Liu G., Liao X., Deng X., Sun D., Hu Y., Huang Y., 2004 Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporiumSeparation and Purification Technology 34, 135–142CrossRefGoogle Scholar
  25. Low K.S., Lee C.K., Liew S.C., 2000 Sorption of cadmium & lead from aqueous solution by spent grainProcess Biochemistry 36, 59–64CrossRefGoogle Scholar
  26. Maceskie L.E., Dean A.C.R., 1984 Cadmium accumulation by Citrobacter sp. Journal of General Microbiology 130, 53–62Google Scholar
  27. Mak Y.M., Ho K.K., 1991 An improved method for the isolation of chromosomal DNA from various bacteria and cyanobacteriaNucleic Acids Research 20, 4101–4102CrossRefGoogle Scholar
  28. McLean J., Beveridge T.J., 2001 Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenateApplied and Environment Microbiology 67, 1076–1084CrossRefGoogle Scholar
  29. Michel C., Brugma M., Aubert C., Bernadac A., Bruschi M., 2001 Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteriaApplied Microbiology and Biotechnology 55, 95–100CrossRefGoogle Scholar
  30. Nelson Y.M., Lo W., Lion L.W., Shuler M.L., Ghirose W.C., 1995 Lead distribution in a simulated aquatic environment: Effect of bacterial films and iron oxide Water Research 29, 1934–1944CrossRefGoogle Scholar
  31. Ozdemir G., Ceyhan N., Ozturk T., Akirmak F., Cosar T., 2004 Biosorption of chromium(VI), cadmium(II) and copper (II) by Pentoea sp. TEM18 Chemical Engineering Journal 102, 249–253CrossRefGoogle Scholar
  32. Pal A., Choudhuri P., Dutta S., Mukherjee P.K., Paul A.K., 2004 Isolation and characterization of nickel-resistant microflora from serpentine soils of AndamanWorld Journal of Microbiology and Biotechnology 20, 881–886CrossRefGoogle Scholar
  33. Pazirandch M., Wells M.B., Ryon L.R., 1998 Development of bacterium-based heavymetal biosorbents: Enhanced uptake cadmium and mercury by E. coli expressing a metal binding motifApplied and Environmental Microbiology 64, 1068–1072Google Scholar
  34. Riazul H., Zaidi S.K. Shakoori A.R., 1999 Cadmium resistant Enterobacter cloacae and Klebsialla sp. isolated from industrial effluents and possible role in cadmium detoxificationWorld Journal of Microbiology and Biotechnology 15, 249–254CrossRefGoogle Scholar
  35. Roane T.M., 1999 Lead resistance in two isolates from heavy metal-contaminated soilsMicrobial Ecology 37, 218–224CrossRefGoogle Scholar
  36. Rosen P.B., 1996 Bacterial resistance to heavy metals and metalloids Journal of Biological Chemistry 1, 273–277Google Scholar
  37. Saithong K., Prasertsan P., 2002 Biosorption of heavy metals by thermo tolerant polymer producing bacterial cells and the bioflocculantSangklanakarin Journal of Science and Technology 24, 421–430Google Scholar
  38. Sanders C.L., 1986 Toxicological Aspects of Energy production MacMillan Publishing Company New York pp. 158–162. ISBN 0-02948960-1Google Scholar
  39. Sani R.K., 2001. Copper-induced inhibition of growth of Desulfovibrio desulphuricans G20; Assessment of its toxicity and correlation with those of Zinc and LeadApplied and Environmental Microbiology 67, 4765–4772CrossRefGoogle Scholar
  40. Sar P., Kazy S.K., Asthana R.K., Singh S.P., 1998 Nickel uptake by Pseudomonas aeruginosa: role of modifying factorsCurrent Microbiology 37, 306–311CrossRefGoogle Scholar
  41. Schmidt T., Schlegel H.G., 1994 Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xyloxidans 31A Journal of Bacteriology 176, 7045–7054Google Scholar
  42. Silver S., Misra T.K., 1988 Plasmid-mediated heavy metal resistanceAnnual Review of Microbiology 42, 717–737CrossRefGoogle Scholar
  43. Singh K.L., Kumar A., 1998 Incidence of multiple heavy metal resistance in a Bacillus speciesJournal of Microbiology and Biotechnology 8, 497–500Google Scholar
  44. Suresh Kumar M.K., Krishnan H.H., Selvam G.S., 2001 Cadmium resistant bacteria Pseudomonas aeruginosa species isolated from Cochin environment In Iyer C.S.P., ed. Emerging Trends in Environmental Science 1st edn. 298–304 Asiatech Publishers Inc. New Delhi. ISBN 81-87680-05-9Google Scholar
  45. Suresh Kumar M.K., Selvam G.S., Jasmine P.S., 1998 Cadmium tolerance and metal accumulation by bacterial strain from industrial effluentsJournal of Scientific and Industrial Research 57, 817–820Google Scholar
  46. Tamai K.T., Gralla E.B., Ellerby L.M., Valentine J.S., Thiele D.J., 1993 Yeast and mammalian metallothionein functionally substitute for yeast copper–zinc super oxide dismutaseProceedings of National Academy of Sciences, USA. 90, 8013–8017CrossRefGoogle Scholar
  47. Thompson G.A., Watling R.J., 1987 Bioaccumulation and Biosorption potential of heterotrophic bacteria for lead, selenium and arsenicBulletin of Environmental Contamination and Toxicology 38, 1049–1054CrossRefGoogle Scholar
  48. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., 1997 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Research 25, 4876–4882CrossRefGoogle Scholar
  49. Valdman E., Erijman L., Pessoa F.L.P., Leite S.G.F., 2001 Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum spProcess Biochemistry 36, 869–873CrossRefGoogle Scholar
  50. Verma T., Srinath T., Gadpayle R.U., Ramteke P.W., Hans R.K., Garg S.K., 2001 Chromate tolerant bacteria isolated from tannery effluentBioresource Technology 78, 31–35CrossRefGoogle Scholar
  51. Vesper S.J., Donovan -Brand R., Pete -Paris K., Al-Abed S.R., Ryan J.A., Davis -Hoover W.J., 1996 Microbial removal of lead from solid media and soil Water, Air and Soil Pollution 86, 207–219CrossRefGoogle Scholar
  52. Volesky B., 1990 Biosorption of Heavy Metals CRC Press Inc. Boca Raton, FL p. 408. ISBN 0-84934917-6 Google Scholar
  53. Volesky B., 1994 Advances in biosorption of metals: Selection of biomass types FEMS Microbiology Reviews 14, 291–302CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Chelliah Edward Raja
    • 1
  • Kolandaswamy Anbazhagan
    • 1
  • Govindan Sadasivam Selvam
    • 1
    Email author
  1. 1.Department of Biochemistry, Center for Excellence in Genomic SciencesSchool of Biological Sciences, Madurai Kamaraj UniversityMaduraiIndia

Personalised recommendations