Advertisement

Optimization of conditions for cell cultivation of Porphyra haitanensis conchocelis in a bubble-column bioreactor

  • Wei Zhang
  • Jiang-Tao Gao
  • Yi-Chen Zhang
  • Song Qin
Article

Summary

Process conditions for cell cultures derived from conchocelis of female red macroalga Porphyra  haitanensis were optimized in an illuminated 0.3-l bubble-column photobioreactor, using CO2 in air as the sole carbon source during a 20-day cultivation period. It reached the highest growth rate when the initial cell density was 700 mg l−1 (dry weight), the optional aeration rate was 1.2 v/v/min, inorganic nitrate concentration was 15 mM and inorganic phosphate concentration was 0.6 mM. This is the first reported bioreactor cultivation study of cell cultures derived from conchocelis of Porphyra  haitanensis.

Keywords

Biomass bubble-column conchocelis optimization photobioreactor Porphyra  haitanensis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the grant from the Key Innovative Project of the Chinese Academy of Sciences (No. KZCX3-SW-215). The authors also thank Dr. JiangPeng for helpful discussions and Dr. YangRui for providing Porphyra haitanensis female conchocelis cells in this research.

References

  1. Chalmers J.J., 1994 Cells and bubbles in sparged bioreactors Cytotechnology 15: 311–320CrossRefPubMedGoogle Scholar
  2. Cheney D., Metz B., Stiller J., 2001 Agrobacterium-mediated genetic transformation in the macroscopic marine red alga Porphyra  yezoensis Journal of Phycology 37 Suppl: S11Google Scholar
  3. Conitz J.M., Fagen R., Lindstrom S.C., Plumley F.G., Stekoll M.S., 2001 Growth and pigmentation of juvenile Porphyra  torta (Rhodophyta) gametophytes in response to nitrate, salinity and inorganic carton Journal of Applied Phycology 13: 423–431CrossRefGoogle Scholar
  4. Dinabandhu S., Tang X.-R., Charles Y., 2002 Porphyra – the economic seaweed as a new experimental system Current Science 83: 1313–1316Google Scholar
  5. He P., Yao Q., Chen Q., Guo M., Xiong A., Wu W., Ma J., 2001 Transferring and expression of glucose oxidase gene – gluc in Porphyra  yezoensis Journal of Phycology 37 Suppl S22Google Scholar
  6. Hiroyuki N., 1993 Health benefits and nutritional properties of Nori Journal of Applied Phycology 5: 255–258CrossRefGoogle Scholar
  7. Javanmardian M., Palsson B.O., 1991 High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system Biotechnology and Bioengineering 38: 1182–1189CrossRefGoogle Scholar
  8. Kuang M., Wang S.-J., Li Y., Shen D.-L., Tseng C.-K., 1998 Transient expression of exogenous GUS gene in Porphyra  yezoensis (Rhodophyta) Chinese Journal of Oceanology and Limnology 16: 56–61Google Scholar
  9. Lin C.M., Yarish C., Chen T., 2004 Development of a novel gene transfer method in Porphyra Bulletin of Fish Research Agency (Suppl. 1): S155Google Scholar
  10. Masanobu S., Masanobu K., Hiroshi H., Jun O., Kunio Y., Manabu H., Toshio I., 2002 Antihypertensive effect of Nori-peptides derived from red alga Porphyra  yezoensis in hypertensive patients American Journal of Hypertension Supplement 1(15): 210Google Scholar
  11. Merchuk J.C., 1991 Shear effects on suspended cells Advances in Biochemical Engineering 44: 65Google Scholar
  12. Nelson W.A., Brodie J., Guiry M.D., 1999 Terminology used to describe reproduction and life history stages in the genus Porphyra (Bangiales, Rhodophyta) Journal of Applied Phycology 11: 407–410CrossRefGoogle Scholar
  13. Qi H., Rorrer G.L., 1995 Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a stirred-tank bioreactor Biotechnology and Bioengineering 45: 251–260CrossRefGoogle Scholar
  14. Rupérez P., 2002 Mineral content of edible marine seaweeds Food Chemistry 79: 23–26CrossRefGoogle Scholar
  15. Takahiro E., Kiyotaka N., Miki I., Teruo M., 2004 Telomerase inhibition by sulfoquinovosyldiacylglycerol from edible purple laver (Porphyra  yezoensis) Cancer Letters 212: 15–20CrossRefPubMedGoogle Scholar
  16. Waaland J.R., Stiller J.W., Cheney D.P., 2004 Minireview  – Macroalgal candidates for genomics Journal of Phycology 40: 26–33CrossRefGoogle Scholar
  17. Walther I., Bechler B., Müller O., Hunzinger E., Cogoli A., 1996 Cultivation of Saccharomyces cerevisiae in a bioreactor in microgravity Journal of Biotechnology 47: 113–127CrossRefPubMedGoogle Scholar
  18. Wang S., Wang G., Sun Y., Lu A., 1987 Isolation and cultivation of the vegetative cells of Porphyra  haitanesis (Rhodophyta) Chinese Journal of Oceanology and Limnology 5: 333–339Google Scholar
  19. Yashizawa Y., Enomoto A., Todoh H., Ametani A., Kaminogawa S., 1993 Activation of murine macrophages by polysaccharide fractions from marine alga (Porphyra  yezoensis) Bioscience, Biotechnology, and Biochemistry 57: 1862–1866CrossRefGoogle Scholar
  20. Yashizawa Y., Ametani A., Tsunehiro J., Numura K., Itoh M., Fukui F., Kaminogawa S., 1995 Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra  yezoensis): structure–function relationships and improved solubility Bioscience, Biotechnology, and Biochemistry 59: 1933–1937Google Scholar
  21. Zhang Q.-B., Li N., Zhou G.-F., Lu X.-L., Xu Z.-H., Li Z.-E., 2003a In vivo antioxidant activity of polysaccharide fraction from Porphyra  haitanesis (Rhodephyta) in aging mice Pharmacological Research 48: 151–155CrossRefGoogle Scholar
  22. Zhang Q.-B., Li D.-X., Yu P.-Z., Liu X.-G., Li Z.-E., Xu Z.-H., 2003b Effect of polysaccharides from Porphyra  haitanesis on the activity of spleen cells Chinese Journal of Marine Drugs 96: 14–18Google Scholar
  23. Zhou H.-P., Chen Q.-H., 1990 Anticoagulant and antihyperlipedemic effects of polysaccharide from Porphyra  yezoensis Journal of China Pharmaceutical University 21: 358–360Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Wei Zhang
    • 1
    • 2
  • Jiang-Tao Gao
    • 1
    • 2
  • Yi-Chen Zhang
    • 1
    • 2
  • Song Qin
    • 2
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations