Advertisement

Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation

  • Guang Ming ZengEmail author
  • Hong Yan Yu
  • Hong Li Huang
  • Dan Lian Huang
  • Yao Ning Chen
  • Guo He Huang
  • Jian Bing Li
Article

Summary

The laccase activities of Penicillium simplicissimum H5 during solid-state fermentation with rice straw were studied. Degradation of lignocellulose was also followed. Results showed that all supplemental carbon sources inhibited the laccase activity in different degrees, while suitable concentrations of supplemental nitrogen sources remarkably enhanced the laccase activity. The enhancement of activity by the ordinary laccase inducers 2, 2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and xylidine was not observed in this study. Lignocellulose degradation was improved when laccase activity was relatively low, suggesting a polymerizing function of laccase in lignin degradation by P. simplicissimum.

Keywords

Laccase lignin lignocellulose Penicillium simplicissimum solid-state fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Grant No.70171055, 50179011), the Natural Foundation for Distinguished Young Scholars (50225926), the Doctoral Foundation of Ministry of Education of China (20020532017), the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P.R.C. (TRAPOYT) in 2000 and the National 863 High Technology Research Program of China (2001AA644020, 2003AA644010 and 2004AA649370).

References

  1. Archibald F.S., 1992 A new assay for lignin-type peroxidases employing the dye azure B Applied and Environmental Microbiology 58:3110–3116Google Scholar
  2. Ardon O., Kerem Zohar., Hadar Y., 1996 Enhacement of laccase activity in liquid cultures of the lignolytic fungus Pleurotus ostreatus by cotton stalk extract Journal of Biotechnology 51:201–207CrossRefGoogle Scholar
  3. Arora D.S., Gill P.K., 2000 Laccase production by some white rot fungi under different nutritional conditions Bioresource Technology 73:283–285CrossRefGoogle Scholar
  4. Arora D.S., Gill P.K., 2001 Effects of various media and supplements on laccase production by some white rot fungi Bioresource Technology 77:89–91CrossRefGoogle Scholar
  5. Bonomo R.P., Cennamo G., Purrello R., Santoro A.M., Zappalà R., 2001 Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity Journal of Inorganic Biochemistry 83:67–75CrossRefGoogle Scholar
  6. Bourbonnais R., Paice M.G., Reid I.D., Lanthier P., Yaguchi M., 1995 Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization Applied and Environmental Microbiology 61:1876–1880Google Scholar
  7. Buswell J.A., Cai Y.J., Chang S.T., 1995 Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes FEMS Microbiology Letters 128:81–88CrossRefGoogle Scholar
  8. Crini G., 2005 Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment Progress in Polymer Science 30:38–70CrossRefGoogle Scholar
  9. Criquet S., Tagger S., Vogt G., Iacazio G., Petit J. Lee., 1999 Laccase activity of forest litter Soil Biology and Biochemistry 31:1239–1244CrossRefGoogle Scholar
  10. Dhawan S., Kuhad R.C., 2002 Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri Bioresource Technology 84:35–38CrossRefGoogle Scholar
  11. Eggert C., Temp U., Dean J.F.D., Eriksson K.E., 1996 A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase FEBS Letters 391:144–148CrossRefGoogle Scholar
  12. Fu S.Y., Yu H.S., Buswell J.A., 1997 Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju FEMS Microbiology Letters 147:133–137CrossRefGoogle Scholar
  13. Higuchi T., 1989 Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi American Chemical Society Symposium Series 399:482–502Google Scholar
  14. Hou H., Zhou J., Wang J., Du C., Yan B., 2004 Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye Process Biochemistry 39:1415–1419CrossRefGoogle Scholar
  15. Ishihara T., Miyazaki M., 1972 Oxidation of milled wood lignin by fungal laccase Mokuzai Gakkaishi 18:415–419Google Scholar
  16. Jacques A.E.B., Paloma S.T., Matthé J.M.W., Marco W.F., Willem J.H.B., Jaap V., 1998 Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase Journal of Biological Chemistry 273:7865–7872CrossRefGoogle Scholar
  17. Kahraman S.S., Gurdal I.H., 2002 Effect of synthetic and natural cultures media on laccase production by white rot fungi Bioresource Technology 82:215–217CrossRefGoogle Scholar
  18. Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtas-Wasilewska M., Cho N.S., Hofrichter M., Rogalski J., 1999 Biodegradation of lignin by white rot fungi Fungal Genetics and Biology 27:175–185CrossRefGoogle Scholar
  19. Leontievsky A., Myasoedova N., Pozdnyakova N., Golovleva L., 1997 Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators FEBS Letters 413:446–448CrossRefGoogle Scholar
  20. Li K., Xu F., Eriksson K.L., 1999 Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound Applied and Environmental Microbiology 65:2654–2660Google Scholar
  21. Li K., Horanyi P.S., Collins R., Phillips R.S., Eriksson K-E.L., 2001 Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus Enzyme and Microbial Technology 28:301–307CrossRefGoogle Scholar
  22. Medina A., Probanza A., Manero F.J.G., Azcón R., 2003 Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity(thymidine and leucine incorporation) and fungal biomass(ergosterol and chitin) Applied Soil Ecology 22:15–28CrossRefGoogle Scholar
  23. Norris D.M., 1980 Degradation of 14C-labeled lignins and 14C-labeled aromatic acids by Fusarium solani Applied and Environmental Microbiology 40:2–6Google Scholar
  24. Pérez J., Muñoz-Dorado J., De la Rubia T., Martínez J., 2002 Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview International Microbiology 5:53–63CrossRefGoogle Scholar
  25. Regalado V., Perestelo F., Rodríguez A., Carnicere A., Sosa F.J., De la Fuente G., Falcόn M.A., 1999 Activated oxygen species and two extracellular enzyme: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum Applied Microbiology and Biotechnology 51:388–390CrossRefGoogle Scholar
  26. Rodríguez A., Carnicero A., Perestelo F., De la Fuente G., Milstein O., Falcón M.A., 1994 Effect of Penicillium chrysogenum on lignin transformation Applied and Environmental Microbiology 60:2971–2976Google Scholar
  27. Rodríguez A., Falcόn M.A., Carnicero A., Perestelo F., De la Fuente G., Trojanowski J., 1996 Laccase activities of Penicillium chrysogenum in relation to lignin degradation Applied Microbiology and Biotechnology 45:399–403CrossRefGoogle Scholar
  28. Saparrat M.C.N., 2004 Optimizing production of extracellular laccase from Grammothele subargentea CLPS no. 436 strain World Journal of Microbiology and Biotechnology 20:583–586CrossRefGoogle Scholar
  29. Slomczynski D., Nakas J.P., Tanenbaum S.W., 1995 Production and characterization of laccase from Botrytis cinerea 61–34 Applied and Environmental Microbiology 61:907–912Google Scholar
  30. Srinivasan C., D’souza T.M., Boominathan K., Reddy C.A., 1995 Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767 Applied and Environmental Microbiology 61:4274–4277Google Scholar
  31. Sulistyaningdyah W.T., Ogawa J., Tanaka H., Maeda C., Shimizu S., 2004 Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase FEMS Microbiology Letters 230:209–214CrossRefGoogle Scholar
  32. Trejo-Hernandez M.R., Lopez-Munguia A., Ramirez R.Q., 2001 Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phennolic compounds Process Biochemistry 36:635–639CrossRefGoogle Scholar
  33. Tuomela M., Vikman M., Hatakka A., Itävaara M., 2000 Biodegradation of lignin in a compost environment: a review Bioresource Technology 72:169–183CrossRefGoogle Scholar
  34. Van den Heuvel R.H.H., Fraaije M.W., Berket W.J.H., 2000 Direction of the reactivity of vanillyl-alcohol oxidase with 4-alkylphenols FEBS Letters 481:109–112CrossRefGoogle Scholar
  35. Van den Heuvel R.H.H., Fraaije M.W., Mattevi A., Berket W.J.H., 2002 Structure, function and redesign of vanillyl-alcohol oxidase International Congress Series 1233:13–24CrossRefGoogle Scholar
  36. Van Soest P.J., Rovertson J.B., Lewis B.A., 1991 Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition Journal of Dairy Science 74:3583–3597CrossRefGoogle Scholar
  37. Youn H.D., Hah Y.C., Kang S.O., 1995 Role of laccase in lignin degradation by white-rot fungi FEMS Microbiology Letters 132:183–188CrossRefGoogle Scholar
  38. Zafar S.I., Abdullah N., Iqbal M., Sheeraz Q., 1996 Influence of nutrient amendment on the biodegradation of wheat straw during solid state fermentation with Trametes versicolor International Biodeterioration and Biodegradation 38: 83–87CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Guang Ming Zeng
    • 1
    • 2
    Email author
  • Hong Yan Yu
    • 1
  • Hong Li Huang
    • 1
  • Dan Lian Huang
    • 1
  • Yao Ning Chen
    • 1
  • Guo He Huang
    • 1
    • 2
  • Jian Bing Li
    • 1
    • 2
  1. 1.Department of Environmental Science and EngineeringHunan UniversityChangshaChina
  2. 2.Faculty of EngineeringUniversity of ReginaReginaCanada

Personalised recommendations