World Journal of Microbiology and Biotechnology

, Volume 21, Issue 8–9, pp 1639–1645 | Cite as

Phytohormones and Antibiotics Produced by Bacillus subtilis and their Effects on Seed Pathogenic Fungi and on Soybean Root Development

  • Fabio Fernando Araújo
  • Ademir Assis Henning
  • Mariangela Hungria
Article

Summary

Bacteria belonging to the genus Bacillus were isolated from soil samples of Paraná State, Brazil, with the aim of evaluating their potential biological control of soybean seed pathogens. Strain PRBS-1 was selected, showing similar effectiveness to that of the strain AP-3, used as a reference due to its known antibiotic potential. The sequencing of the ribosomal 16S rRNA gene confirmed that both strains belong to the species B. subtilis, although showing high genetic diversity in relation to this species. Both strains inhibited five soybean seed pathogenic fungi in vitro, Rhizoctonia solani, Colletotrichum truncatum, Sclerotinia sclerotiorum, Macrophomina phaseolina and Phomopsis sp. Furthermore, the metabolites of AP-3 increased production of root hairs, while the metabolites of PRBS-1 stimulated outgrowth of lateral roots in soybean. The antibiotic effect of both strains seemed to be related to compounds of the iturin group, while the root growth promotion by PRBS-1 was at least partially related to the production of indoleacetic acid. The results have shown the potential of using selected strains of B. subtilis in the biological control of seed pathogens, as well as in promoting soybean growth.

Keywords

Bacillus subtilis biological control soybean seed pathogenic fungi PGPR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich, J., Baker, R. 1970Biological control of Fusarium roseum f. sp. dianthi by Bacillus subtilisPlant Disease Reporter54446448Google Scholar
  2. Araújo, F.F. & Hungria, M. 1995 Comportamento a campo e casa de vegetação de soja co-inoculada com Bacillus e Bradyrhizobium. In: Microbiologia do Solo, Desafios para o Século XXI, Hungria, M., Balota, E.L., Colozzi-Filho, A. & Andrade, D.S. (eds.), (pp. 456–461). IAPAR/EMBRAPA-CNPSo, Londrina, BrazilGoogle Scholar
  3. Araújo, F.F., Hungria, M. 1999Nodulação e rendimento de soja co-infectada com Bacillus subtilis e Bradyrhizobium japonicum/Bradyrhizobium elkaniiPesquisa Agropecuária Brasileira3416331643Google Scholar
  4. Araújo, F.F., Henning A., Hungria, M. & Lima, J. 1995 Caracterização do potencial antifúngico de Bacillus spp. isolados de solos do Paraná. In: Microbiologia do Solo, Desafios para o Século XXI. Hungria, M., Balota, E.L., Colozzi-Filho, A., Andrade, D.S. (eds.), (pp. 450–455). IAPAR/EMBRAPA-CNPSo, Londrina, BrazilGoogle Scholar
  5. Bernal G, Illanes, A. & Ciampi, L. 2002 Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electronic Journal of Biotechnology (on line), 15 April 2002, 5 (1). Available from http://www.ejbiotechnology.info/content/vol5/issue1/full/4/Google Scholar
  6. Besson, F., Michel, G. 1987Isolation and characterization of new iturins,iturin D and iturin EJournal of Antibiotics40437442Google Scholar
  7. Besson, F., Peypoux, F., Michel, G. 1979Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; inhibition of this antifungal activity by lipid antagonistsJournal of Antibiotics32828833Google Scholar
  8. Bettiol, W., Kimati, H. 1990Efeito do Bacillus subtilis sobre Pyricularia orizae agente causal da bruzone do arrozPesquisa Agropecuária Brasileira2511651174Google Scholar
  9. Bettiol, W., Garibaldi, A., Migueli, Q. 1997Bacillus subtilis for the control of powdery mildew on cucumber and zucchini squashBragantia56281287CrossRefGoogle Scholar
  10. Bettiol, W., Saito, M.L., Brandão, M.S.B. 1994Controle da ferrugem do cafeeiro com produtos à base de Bacillus subtilisSumma Phytopathologica20119122Google Scholar
  11. Buchanan, R.E., Gibbons, N.G. 1975Bergey’s Manual of Determinative Bacteriology8Willians & WilkinsBaltimore,ISBN 0–683–04108-8Google Scholar
  12. Chen, L.S., Figueredo, A., Pedrosa, F.O., Hungria, M. 2000Genetic characterization of soybean rhizobia in ParaguayApplied and Environmental Microbiology6650995103Google Scholar
  13. Collins, C.H., Lyne, P.M. 1984Microbiological Methods5Butterworths & CoLondonISBN 040870957XGoogle Scholar
  14. Cubeta, M.A., Hartman, G.L., Sinclair, J.B. 1985Interaction between Bacillus subtilis and fungi associated with soybean seedsPlant Disease69506509Google Scholar
  15. Dunleavy, J. 1955Control of damping-off sugar beet by Bacillus subtilisPhytopathology45252258Google Scholar
  16. Evans, M.L. 1984 Functions of hormones at the cellular level of organization In: Hormonal Regulation of Development II: The Functions of Hormones from the Level of the Cell to the Whole Plant v.2. Scott, T.K. (ed.), (pp. 23–62) Springer-Verlag Berlin ISBN 0–387-10196-9Google Scholar
  17. Hadas, R., Okon, Y. 1987Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlingsBiology and Fertility of Soils5241247CrossRefGoogle Scholar
  18. Halverson, L.J., Handelsman, J. 1991Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamberApplied and Environmental Microbiology57 27672770Google Scholar
  19. Hungria, M., Stacey, G. 1997Molecular signals exchanged between host plants and rhizobia: Basic aspects and potential application in agricultureSoil Biology and Biochemistry29819830CrossRefGoogle Scholar
  20. Hungria, M., Campo, R.J., Mendes, I.C. & Graham, P.H. 2005 Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics, The success of soybean (Glycine max L. Merr.) in South America, In: Nitrogen Nutrition and Sustainable Plant Productivity. Singh, R.P. & Shankar Jaiwal, N.P.K. (eds.), Studium Press, LLC, Houston, Texas (in press)Google Scholar
  21. Hungria, M., Nishi, C.Y.M., Cohn, J., Stacey, G. 1996Comparison between parental and variant soybean Bradyrhizobium strains with regard to the production of lipo-chitin nodulation signals, early stages of root infection, nodule occupancy, and N2 fixation ratesPlant and Soil186331341Google Scholar
  22. Jacobs, W.P. 1979Plant Hormones and Plant Development Cambridge University PressCambridgeISBN 0–521-22062-9Google Scholar
  23. Katz, E., Demain, A.L. 1977The peptide antibiotics of Bacillus, Chemistry, biogenesis and possible functionsBacteriology Reviews41449474Google Scholar
  24. Kilian, M, Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G., Hain, R. 2000FZB24®Bacillus subtilis – mode of action of a microbial agent enhancing plant vitalityPflanzenschutz-Nachrichten Bayer1/00/17293Google Scholar
  25. Krebs, B., Junge, H., Ockhardt, A., Hoding, B., Heubner, D., Erben, U. 1993Bacillus subtilis: An effective biocontrol agentPesticide Science37427429Google Scholar
  26. Li, D., Alexander, M. 1988Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobiaPlant and Soil108211219Google Scholar
  27. Li, D., Alexander, M. 1990Factors affecting co-inoculation with antibiotic-producing bacteria to enhance rhizobial colonization and nodulationPlant and Soil129195201Google Scholar
  28. Liu, Z.L., Sinclair, J.B. 1990Enhanced soybean plant growth and nodulation by Bradyrhizobium in the presence of strains of Bacillus megateriumPhytopathology801024Google Scholar
  29. Loper, J.E., Schroth, M.N. 1986Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beetPhytopathology76386389CrossRefGoogle Scholar
  30. Luz, W.C. 1994Efeito da microbiolização de sementes no rendimento e controle da podridão comum das raízes e de patógenos das sementes de trigoFitopatologia Brasileira19144148Google Scholar
  31. Maget-Dana, R., Peypoux, F. 1994Iturins, a special classe of pore-forming lipopeptides, Biological and physicochemical propertiesToxicology87151174CrossRefGoogle Scholar
  32. Maget-Dana, R., Peypoux, F., imatsuno, Y., Ano, T., Shoda, M. 1992Cloning of a gene responsible for the specific production of an antifungal antibiotic iturin with amino acid residueJournal of General and Applied Microbiology38505509Google Scholar
  33. Matsuno, Y., Ano, T., Shoda, M. 1992Cloning of a gene responsible for the specific production of an antifungal antibiotic iturin with n-C16-ß-amino acid residueJournal of General Microbiology38505509Google Scholar
  34. Maurhofer, M., Keel, C., Scheneider, U., Voisard, C., Hass, D., Defago, G. 1992Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacityPhytopathology82190195Google Scholar
  35. McKeen, C.D., Reilly, C.C., Pusey, P.L. 1986Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilisPhytopathology76136139Google Scholar
  36. Melo, I.S. 1998 Agentes microbianos de controle de fungos .topatogê nicos, In: I.S Melo, & J.L. Azevedo (Eds.), Embrapa-CNPMA, Jaguariúna.Google Scholar
  37. Merriman, P.R., Price, R.D., Backer, K.F. 1974The effect of inoculation of seeds with antagonists of Rhizoctonia solani on the growth of wheatAustralian Journal of Agriculture Research25213218Google Scholar
  38. Molla, A.H., Shamsuddin, Z.H., Halimi, M.S., Morziah, M., Puteh, A.B. 2001Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in a laboratory systemsSoil Biology and Biochemistry33457463CrossRefGoogle Scholar
  39. NCBI (National Center for Biotechnology Information). 2004 Retrieved on 1st March 2004, Available from http://www.ncbi.nlm.nih.gov/blastGoogle Scholar
  40. Phae, C., Shoda, M. 1991Investigation of optimal conditions for foam separation of iturin an antifungical peptide produced by Bacillus subtilisJournal of Fermentation and Bioengineering71118121CrossRefGoogle Scholar
  41. Pusey, P.L., Wilson, C.L. 1984Postharvest biological control of stone fruit brown rot by Bacillus subtilisPlant Disease68753756Google Scholar
  42. Raupach, G.S., Kloepper, J.W. 1998Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogensPhytopathology8811581164Google Scholar
  43. Tratch, R., Lima, M.L.R.Z., Lima Neto, V.C., Araújo, F.F., Bettiol, W. 1993Controle da podridão parda do pêssego com metabólitos de Bacillus subtilisSumma Phytopathologica192930Google Scholar
  44. Turner, J.T., Backman, P.A. 1991Factors relating to peannut yield increases following Bacillus subtilis seed treatmentPlant Disease75347353CrossRefGoogle Scholar
  45. Vincent, J.M. 1970Manual for the Practical Study of Root Nodule BacteriaBlackwell Scientific Publications (IBP Handbook 15)Oxford, UKISBN 0–63206410–2Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Fabio Fernando Araújo
    • 1
  • Ademir Assis Henning
    • 2
  • Mariangela Hungria
    • 2
  1. 1.Faculdade de Ciências AgráriasUniversidade do Oeste PaulistaPresidente PrudenteBrazil
  2. 2.Embrapa SojaLondrinaBrazil

Personalised recommendations