Screening the Main Factors Affecting Extraction of the Antimicrobial Substance from Bacillus sp. fmbJ using the Plackett–Burman Method

  • Xiaomei Bie
  • Zhaoxin Lu
  • Fengxia Lu
  • Xiaoxiong Zeng


The Plackett–Burman screening method was utilized as a tool to evaluate the importance of the selected six factors, including methanol, ethanol, propanol, butanol, pH and time, which are relevant to the extraction of the antimicrobial substance produced by Bacillus sp. fmbJ. The main factors that affected the extraction of the antimicrobial substance were determined as methanol (P < 0.0001), ethanol (P < 0.0001), pH (P = 0.0032), and time (P < 0.0001) by using the JMP software. Within the test ranges, methanol, ethanol, and time showed a significant positive relativity to the total extracted amounts respectively; while pH had a significant negative effect. The maximum prediction profile indicated that the total extracted amounts for the antimicrobial substance would reach 50.21 mg/100 ml with 99.64% probability.


Antimicrobial substance Bacillus sp. fmbJ extraction JMP software Plackett–Burman design main factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chae Gun, P., Makoto, S., Hiroshi, K. 1990Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganismsJournal of Fermentation and Bioengineering6917Google Scholar
  2. Chieh-chen, H., Takashi, A., Makoto, S. 1993Nucleotide sequence and characteristics of the gene, lpa-14, responsible for biosynthesis of the lipopeptide antibiotics iturin A and suefactin from Bacillus subtilis RB14Journal of Fermention and Bioengineering6445450Google Scholar
  3. Demeo, M., Laget, M., Phan-Tan-Luu, R., Mathieu, D., Dumenil, G. 1985Application of experimental designs for optimization of medium and culture conditions in fermentationBioscience499102Google Scholar
  4. François, A., Philippe, J., Magali, D. 2000Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicityEnzyme and Microbial Technology27749754Google Scholar
  5. Gluliano, B., Andres, H., Luigi, C. 2002Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agentsJournal of Biotechnology.518Google Scholar
  6. Kalil, S.J., Maugeri, F., Rodrigues, M.I. 2000Response surface analysis and simulation as a tool for bioprocess design and optimizationProcess Biochemistry35539550CrossRefGoogle Scholar
  7. Kenji, T., Takahashi, A., Makoto, S. 1996Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8Archives of Microbiology165243251Google Scholar
  8. Kenji, T., Takahashi, A., Mitsuyo, H., Yoshiyuki, N., Makoto, S. 1999The genes degQ, pps, lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin productionAntimicrobial Agents and Chemotherapy921832192Google Scholar
  9. Landy, M., Warren, G.H., Rosenman, S. B., Colio, L.G. 1948An antibiotic from Bacillus subtilis active against pathogenic fungiProceedings of the Society for Experimental Biology and Medicine67539541Google Scholar
  10. Long-Shan, T.L., Chieh-Chang, P., Bo-Kun, T. 2003The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged culturesProcess Biochemistry3813171326Google Scholar
  11. Maget-Dana, R., Peypoux, F. 1994Iturins, a special class of pore-forming lipopeptides: biological and physicochemical propertiesToxicology87151174CrossRefGoogle Scholar
  12. Martin, K., Joachim, V., Britta, K., Torsten, S., Peter, F., Dieter, Z. 1998Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB105Journal of Colloid and Interface Science20418Google Scholar
  13. Nakayma, S., Takahashi, M., Hirai, M., Shoda, M. 1997Isolation of new variants of surfactin by a recombinant Bacillus subtilisApplied Microbiology and Biotechnology488082Google Scholar
  14. Nissen-Meyer, J., Nes, I.F. 1997Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of actionArchives of Microbiology1676777CrossRefGoogle Scholar
  15. Osman, M., Hoiland, H., Holmsen, H., Ishigaml, Y. 1998Tuning micelles of a bioactive heptapeptide biosufactant via extrinsically induced conformational transition of surfactin assemblyJournal of Peptide Science4449458CrossRefGoogle Scholar
  16. Peypoux, F., Marion, D., Maget-Dana, R., Ptak , M., Das, B.C., Michel, G. 1985Structure of bacillomycin F, a new pepdolipid antibiotic of the iturin groupEuropen Journal of Biochemistry153335340Google Scholar
  17. Plackett, R.L., Burman, J.P. 1946The design of optimum multifactorial experimentsBiometrika33305325Google Scholar
  18. Roseiro, J.C., Esgalhado, M.E., Amaral Collaco, M.T. 1992Medium development for xanthan productionProcess Biochemistry27167175CrossRefGoogle Scholar
  19. Soo-Jin, C., Sam, K.L., Byeong, J.C., Young, H.K., Kwang-Soo, S. 2003Detection and characterization of the Gloeosporium gloesporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03FEMS Microbiology Letters2234751Google Scholar
  20. Yu, X., Hallett, S.G., Sheppard, J. 1997Application of the Plackett–Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes sporesApplied Microbiology and Biotechnology47301305CrossRefGoogle Scholar
  21. Yu, G.Y., Sinclair, J.B., Hartman, G.L., Bertagnolli, B.L. 2002Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solaniSoil Biology and Biochemistry34955963CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Xiaomei Bie
    • 1
  • Zhaoxin Lu
    • 1
  • Fengxia Lu
    • 1
  • Xiaoxiong Zeng
    • 1
  1. 1.College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of ChinaNanjing Agricultural UniversityNanjingP.R. China

Personalised recommendations